Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2019
  5. Mango ripeness classification system using hybrid technique
 
Options

Mango ripeness classification system using hybrid technique

Journal
Indonesian Journal of Electrical Engineering and Computer Science
ISSN
25024752
Date Issued
2019-05-01
Author(s)
Mavi M.F.
Husin Z.
R Badlishah Ahmad
Universiti Malaysia Perlis
Yacob Y.M.
Farook R.S.M.
Tan W.K.
DOI
10.11591/ijeecs.v14.i2.pp859-868
Abstract
Nowadays there are many systems develop for agricultural purposes and most system implemented on the use of non-destructive technique not only to classify but also to determine the fruit ripeness. However, most of the studies concentrates using single technique to assess the fruit ripeness. Thi s paper presents the work on mango ripeness classification using hybrid technique. Hybrid stands for mix or combination between two different elements, thus this study combined two different technique that is image processing and odour sensing technique in a single system. Image processing technique are implemented using color image that is HSV image color method to determine the ripeness of fruit based on fruit peel skin through color changes upon ripening. Whereas, odour sensing technique are implemented using sensors array to determine the fruit ripeness through smell changes upon ripening. The “Harumanis” and “Sala” mango was used for sample collection based on two different harvesting condition that is unripe and ripe were evaluated using the image processing and followed by the odour sensor. Support Vector Machine (SVM) is applied as classifier for training and testing based on the data collected from both techniques. The finding shows around 94.69% correct classification using hybrid technique of image processing and odour sensing in a single system.
Funding(s)
Ministry of Higher Education, Malaysia
Subjects
  • Fruit ripeness | Hybr...

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies