Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2020
  5. Solar Powered Multiple Output Buck Converter
 
Options

Solar Powered Multiple Output Buck Converter

Journal
IOP Conference Series: Materials Science and Engineering
ISSN
17578981
Date Issued
2020-12-18
Author(s)
Muhammad Zaid Aihsan
Universiti Malaysia Perlis
Norhanisa Kimpol
Universiti Malaysia Perlis
Liew Hui Fang
Universiti Malaysia Perlis
Muhammad Izuan Fahmi Romli
Universiti Malaysia Perlis
Wan Azani Wan Mustafa
Universiti Malaysia Perlis
Junaidah Ali Mohd Jobran
Universiti Malaysia Perlis
Mohamed Mydin Hj M.Abdul Kader
Universiti Malaysia Perlis
DOI
10.1088/1757-899X/932/1/012075
Abstract
Times have certainly changed over the past few decades, now it seems that technology is getting more compact and efficient. The modern outdoor enthusiast such as hikers, climbers has a problem regarding the lack of power supply to power up electronics when they go for adventure activities. In order to solve this problem, this paper design and develop DC/DC buck converter system to drop down the voltage from the solar photovoltaic (PV) system from 12VDC into 5VDC. This paper is first to start up with design and simulation circuit using simulation to test outcome of this paper in the range of 5VDC & 1.0A and 5VDC & 0.5A. A battery storage is needed to feed electricity independent and battery management of the battery is needed to improve the performance of battery life. This can be done by adding a charge controller unit. The outcome of this paper allows the battery to be charged using the solar panel and at the same time can produce multiple outputs for low voltages used. The software simulation has been done to shows this system produces two different output and the hardware will be developed based on the software results. Software and hardware result, both will be compared and analysed.
Funding(s)
Universiti Malaysia Perlis
File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies