Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. Two-stream deep convolutional neural network approach for RGB-D face recognition
 
Options

Two-stream deep convolutional neural network approach for RGB-D face recognition

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2021-07-21
Author(s)
Shunmugam P.
Kamarulzaman Kamarudin
Universiti Malaysia Perlis
Latifah Munirah Kamarudin
Universiti Malaysia Perlis
Ammar Zakaria
Universiti Malaysia Perlis
Nishizaki H.
DOI
10.1063/5.0053043
Abstract
Two-dimensional face recognition has been researched for the past few decades. With the recent development of Deep Convolutional Neural Network (DCNN) deep learning approaches, two-dimensional face recognition had achieved impressive recognition accuracy rate. However, there are still some challenges such as pose variation, scene illumination, facial emotions, facial occlusions exist in the two-dimensional face recognition. This problem can be solved by adding the depth images as input as it provides valuable information to help model facial boundaries and understand the global facial layout and provide low-frequency patterns. RGB-D images are more robust compared to RGB images. Unfortunately, the lack of sufficient RGB-D face databases to train the DCNN are the main reason for this research to remain undiscovered. So, in this research, new RGB-D face database is constructed using the Intel RealSense D435 Depth Camera which has 1280 x 720-pixel depth. Twin DCNN streams are developed and trained on RGB images at one stream and Depth images at another stream, and finally combined the output through fusion soft-max layers. The proposed DCNN model shows an accuracy of 95% on a newly constructed RGB-D database.
File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies