Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Potential of pretreated palm kernel shell on pyrolysis
 
Options

Potential of pretreated palm kernel shell on pyrolysis

Journal
IOP Conference Series: Earth and Environmental Science
ISSN
17551307
Date Issued
2023-01-01
Author(s)
Razi Ahmad
Universiti Malaysia Perlis
Ragunathan Al Santiagoo
Universiti Malaysia Perlis
Abdul Ghapar Ahmad
Universiti Malaysia Perlis
Syakirah Afiza Mohammed
Universiti Malaysia Perlis
Wan Ahmad W.A.M.
Vikneswaran Vijean
Universiti Malaysia Perlis
Ibrahim N.R.
DOI
10.1088/1755-1315/1135/1/012033
Abstract
The impact of pretreatment on palm kernel shell (PKS) with torrefaction for the possibility of pyrolysis is discussed in this study. PKS samples were torrefied at different holding times of 30 and 60 minutes at temperatures of 200, 225, 250, 275, and 300 °C. In a fixed-bed reactor with a constant nitrogen flow rate of 500 ml/min, torrefaction pretreatment was carried out. The elemental composition, mass, and energy yield, as well as proximate analysis, were all performed on the pretreated PKS. The optimised pretreated PKS was pyrolyzed next at a temperature of 400 to 550 °C in a fixed-bed reactor. The outcomes demonstrated that the pretreated PKS had a significant mass and energy yield at a temperature of 250 °C and a holding time of 30 min. PKS's calorific value and carbon content both rose after pretreatment. However, the oxygen and moisture content decreased for pretreated PKS. The maximum bio-oil production of 58% was achieved during the pyrolysis of pretreated PKS at a temperature of 500 °C. At higher temperature of 550 ℃, the bio-oil decreased due to secondary cracking reaction. Consequently, the pretreated PKS has greater potential as effective feedstock for successive proses particularly pyrolysis for bio-oil production.
Funding(s)
Ministry of Higher Education, Malaysia
File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies