Due to their low output costs, straightforward manufacturing, and high effectiveness, dyesensitized solar cell (DSSC) has a large following interest in the solar energy industry. Furthermore, due to its outstanding properties, tin oxide (SnO₂) is an appealing semiconducting material suitable as a photoanode in DSSCs. In this research, the photoelectrodes of DSSC were fabricated using commercial SnO₂ nanoparticles and sensitized with inorganic and organic dyes, N719 and Curcuma longa (turmeric) extract dye.
On top of that, a platinum (Pt) counter electrode, iodide electrolyte and fluorine-doped tin oxide (FTO) coated glass substrate were used to fabricate the DSSC. The crystallographic structure and surface morphology of the SnO₂ nanopowder were identified using X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations respectively. In addition, UV-Visible and current density-voltage curves were used to analyze the optical properties of the photoanodes and the cell’s electrical performance. As a result, it was found that the DSSC fabricated with N719 dye exhibited higher efficiency in contrast with the turmeric extract dye with SnO₂ photoanodes.