Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2022
  5. A Review on Deep Convolutional Neural Network Architectures for Medical Image Segmentation
 
Options

A Review on Deep Convolutional Neural Network Architectures for Medical Image Segmentation

Journal
Lecture Notes in Electrical Engineering
ISSN
18761100
Date Issued
2022-01-01
Author(s)
Nik Hasnida Awang Mustapa
Mohd Hanafi Mat Som
Universiti Malaysia Perlis
Khairul Salleh Basaruddin
Universiti Malaysia Perlis
Megat Syahirul Amin Megat Ali
DOI
10.1007/978-981-16-8129-5_148
Abstract
Osteogenesis Imperfecta (OI) image segmentation by using Deep Convolutional Neural Network (DCNN) is yet to be evaluated. The segmentation of OI is very important as a useful tool for medical experts to further analyze the fracture risk and avoid bone fractures. In this paper, we present the review of DCNN architecture used in image segmentation. The images were obtained from different types of modalities such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), or Ultrasound. Several architectures have been used by previous studies include U-Net, faster R-CNN, ResNet, and MS-Net architecture to automatically segment the images. Overall, all researchers from the reviewed papers concluded that the proposed DCNN architecture gave good performance results.
Subjects
  • DCNN architecture | D...

File(s)
Research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies