Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. First principles calculations of structural, electronic, mechanical and thermoelectric properties of cubic ATiO<inf>3</inf> (A= Be, Mg, Ca, Sr and Ba) perovskite oxide
 
Options

First principles calculations of structural, electronic, mechanical and thermoelectric properties of cubic ATiO<inf>3</inf> (A= Be, Mg, Ca, Sr and Ba) perovskite oxide

Journal
Computational Condensed Matter
Date Issued
2021-09-01
Author(s)
Adewale A.A.
Abdullah Chik
Universiti Malaysia Perlis
Tijjani Adam
Universiti Malaysia Perlis
Yusuff O.K.
Ayinde S.A.
Sanusi Y.K.
DOI
10.1016/j.cocom.2021.e00562
Abstract
First principle calculation was performed to investigate material properties such as structural, electronic, mechanical and thermoelectric of ATiO3 (Be, Mg, Ca, Sr or Ba) a perovskite based oxide within density functional theory. Calculations were performed using PBEsol exchange correlation functional within generalized gradient approximation (GGA). Structural and electronic properties were elaborated since their effect gives information about the thermoelectric performance. The underestimate of band gap from DFT calculation were corrected by using DFT with Modified Becke and Johnson (mBJ). It was observed that compound with small band gap have higher electrical conductivity and at the same time, high performance of thermoelectric power factors. BeTiO3 was found to possess very low power factor due to its low value of Seebeck coefficient and electrical conductivity. Highest thermoelectric power factor was obtained in BaTiO3 at 1200 K. Elastic constant were used to explain the mechanical properties such as anisotropic, brittle characteristics, stiffness and many others.
Subjects
  • Density functional th...

File(s)
Research repository notification.pdf (4.4 MB)
Views
3
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies