Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2020
  5. Cloud-based System for University Laboratories Air Monitoring
 
Options

Cloud-based System for University Laboratories Air Monitoring

Journal
IOP Conference Series: Materials Science and Engineering
ISSN
17578981
Date Issued
2020-09-21
Author(s)
Abu Hassan Abdullah
Universiti Malaysia Perlis
Sukhairi Sudin
Universiti Malaysia Perlis
Mustafa M.H.
Fathinul Syahir Ahmad Sa'ad
Universiti Malaysia Perlis
Khairul Azwan Ismail
Universiti Malaysia Perlis
Muhammad Aizat Abu Bakar
Universiti Malaysia Perlis
Mohamed Elshaikh Elobaid Said Ahmed
Universiti Malaysia Perlis
Abdul Ghapar Ahmad
Universiti Malaysia Perlis
Zahari Awang Ahmad
Universiti Malaysia Perlis
Sara Yasina Yusuf
Universiti Malaysia Perlis
DOI
10.1088/1757-899X/917/1/012034
Abstract
Indoor air such as house, shopping complex, hospital, university, office and hotel should be monitor for human safety and wellbeing. These closed areas are prone to harmful air pollutants i.e. allergens, smoke, mold, particles radon and hazardous gas. Laboratories in university are special room in which workers (student, technician, teaching/research assistants, researcher and lecturer) conduct their works and experiment. The activities and the environment will generate specific air pollutant which concentration depending to their parameters. Anyone in the environment that exposure to these pollutants may affect safety and health issue. This paper proposes a study of development of a cloud-based electronic nose system for university laboratories air monitoring. The system consists of DSP33-based electronic nose (e-nose) as nodes which measure main indoor air pollutant along with two thermal comfort variables, temperature and relative humidity. The e-noses are placed at five different laboratories for acquiring data in real time. The data will be sent to a web server and the cloud-based system will process, analyse using Neuro-Fuzzy classifier and display on a website in real time. The system will monitor the laboratories air pollutants and thermal comfort by predict the pollutant concentration and dispersion in the area i.e. Air Pollution Index (API). In case of air hazard safety (e.g., gas spills detection and pollution monitoring), the system will alert the security by activate an alarm and through e-mail. The website will display the API of the area in real-time. Results show that the system performance is good and can be used to monitor the air pollutant in the university laboratories.
Funding(s)
Universiti Malaysia Perlis
File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies