Now showing 1 - 2 of 2
  • Publication
    Frequency Dependent Electrical Properties of Ferroelectric Ba0.8Sr0.2TiO3 Thin Film
    The frequency dependent electrical parameters, such as impedance, electric modulus, dielectric constant and AC conductivity for ferroelectric Ba0.8Sr0.2TiO3 thin film have been investigated within the range of 1 Hz and 106 Hz at room temperature. Z* plane shows two regions corresponding to the bulk mechanism and the distribution of the grain boundaries-electrodes process. M" versus frequency plot reveals a relaxation peak, which is not observed in the ε″ plot and it has been found that this peak is a non-Debye-type. The frequency dependent conductivity plot shows three regions of conduction processes, i. e., a low-frequency region due to DC conduction, a mid-frequency region due to translational hopping motions and a high-frequency region due to localized hopping and/or reorientational motion.http://dx.doi.org/10.5755/j01.ms.17.2.490
  • Publication
    Frequency dependent electrical properties of ferroelectric Ba₀.₈Sr₀.₂TiO₃ thin film
    The frequency dependent electrical parameters, such as impedance, electric modulus, dielectric constant and AC conductivity for ferroelectric Baâ‚€.₈Srâ‚€.â‚‚TiO₃ thin film have been investigated within the range of 1 Hz and 106 Hz at room temperature. Z* plane shows two regions corresponding to the bulk mechanism and the distribution of the grain boundaries-electrodes process. M" versus frequency plot reveals a relaxation peak, which is not observed in the ε″ plot and it has been found that this peak is a non-Debye-type. The frequency dependent conductivity plot shows three regions of conduction processes, i. e., a low-frequency region due to DC conduction, a mid-frequency region due to translational hopping motions and a high-frequency region due to localized hopping and/or reorientational motion.http://dx.doi.org/10.5755/j01.ms.17.2.490
      4  18