Options
Zaliman Sauli
Preferred name
Zaliman Sauli
Official Name
Zaliman, Sauli
Alternative Name
Sauli, Zaliman B.
Sauli, Zaliman
Sauli, Z.
Main Affiliation
Scopus Author ID
24554644300
Researcher ID
FWC-2779-2022
Now showing
1 - 3 of 3
-
PublicationSelective detection of amyloid fibrils by a dipole moment mechanism on dielectrode – Structural insights by in silico analysis( 2023-03-01)
;Adam H. ;Kumarevel T. ;Adam T. ;Subramaniam S.Chen Y.Amyloid fibrils are associated with different neurodegenerative diseases, a final product of several protein aggregation pathways. Parkinson's disease is a type of amyloidosis, characterized by the accumulation and propagation of amyloid fibrils of alpha-synuclein. The detection of fibrils at low concentrations is critical for the diagnosis of Parkinson's disease. We report a novel technique for the selective detection of amyloid fibrils through a dipole moment on a dielectrode surface. A sensitive dielectrode sensor for detecting aggregation of alpha synuclein and works by interacting an antibody on two-electrode surface functionalized gold interdigitated electrode. For the physical characterization of the sensing surface and finger electrodes, high-power microscope, scanning electron microscope, and 3D-profilormeter were used. Electrical characterization was performed on the sensing surface by using Keithley 6487 picoammeter. Based on the stability analysis with various electrolytes solutions, the sensor was found to be stable from pH 3. Further, under optimal circumstances, a linear range of alpha synuclein fibril detection was from 100 aM to 100 pM [y = 5E-06x + 5E-06; R² = 0.9724], and the limit of detection was estimated to be 100 aM based on S/N = 3. This study was further anchored by molecular docking analysis with synuclein peptide (47−56). We predict that advancements in this direction will assist in clarifying the complex process posed by Parkinson's disease.2 -
PublicationThe Design and Analysis of High Q Factor Film Bulk Acoustic Wave Resonator for Filter in Super High Frequency( 2021-12-01)
;Nor N.I.M. ;Khalid N. ;Hashim N.A. ;Lang L.H.Qi C.S.Filtering process is one of the highlighted issues when the operating frequency is up to medium or high GHz range in wireless transceiver system. The development of high performance, small size, filter on chip operating in GHz frequency range is the requirement of present and future wireless transceiver systems. The conventional frequency bands, below 6 GHz are already congested, thus, to satisfy this demand, the research into transceiver systems working at frequencies higher than 6 GHz has been growing. Therefore, this work proposed the design and optimization of film bulk acoustic wave resonator (FBAR) operating in frequency 7 GHz to 10 GHz with high quality (Q) factor. The effect of using different geometrical parameters to achieve high Q factor FBAR in these frequency bands is analysed. The designed FBAR achieved Q factor of 1767 at 7 GHz and 1237 at 10 GHz by using aluminium nitride as the piezoelectric thin film and molybdenum as the electrode.3 -
PublicationThe Design and Analysis of High Q Factor Film Bulk Acoustic Wave Resonator for Filter in Super High Frequency( 2021-12-01)
;Lam Hok LangChow Shi QiFiltering process is one of the highlighted issues when the operating frequency is up to medium or high GHz range in wireless transceiver system. The development of high performance, small size, filter on chip operating in GHz frequency range is the requirement of present and future wireless transceiver systems. The conventional frequency bands, below 6 GHz are already congested, thus, to satisfy this demand, the research into transceiver systems working at frequencies higher than 6 GHz has been growing. Therefore, this work proposed the design and optimization of film bulk acoustic wave resonator (FBAR) operating in frequency 7 GHz to 10 GHz with high quality (Q) factor. The effect of using different geometrical parameters to achieve high Q factor FBAR in these frequency bands is analysed. The designed FBAR achieved Q factor of 1767 at 7 GHz and 1237 at 10 GHz by using aluminium nitride as the piezoelectric thin film and molybdenum as the electrode.2