Now showing 1 - 3 of 3
  • Publication
    Production of Solid Biofuels From Renewable Resources: A Review
    Increasing concerns over greenhouse gas emissions, volatile fossil fuel prices, and political instability have led to biomass as a renewable energy source. Close cooperation from the government supported by independent bodies also helps produce this effective and sustainable energy source. As a result, the current growth of solid biofuels has increased tremendously. Agricultural, municipal, forest, commercial waste and dedicated energy crops are the main sources of biomass. Due to this biomass's nature, the methods to produce them into solid biofuels are also different. The energy potential of these biomass sources is quite dependent on the use of technology and public awareness. Therefore, this paper review feedstock biomass, processing processes, product types and properties of solid biofuels in terms of mechanical and combustion. The paper also reviews the solid biofuel production situation in Malaysia.
  • Publication
    The Effect of Different Waste Material Binders in Relation to Khaya Senegalensis Solid Fuel Pellet Quality
    Fuel pellets are an attractive renewable energy source derived from biomass sources thanks to their uniformity and ease of handling. However, raw biomass and waste material binders have several drawbacks, which include poor physical properties, particularly low density and compositional heterogeneity, which restrict their wider use as a general source of energy. Besides, due to the low energy density, low bulk density, and uneven shape and size of raw biomass, it is very difficult to store and transport biomass in its original form, which decreases transport efficiency. This study investigated the effect of waste material binders (rice husk, corn cob, and sugarcane bagasse) on the mechanical and thermal properties of Khaya Senagalensis pellets. The mechanical and thermal properties were determined according to ASTM standards. Waste material binders have affected pellet quality such as density, bulk density, moisture content, durability, compressive strength, shatter index, water resistance, ash content, volatile matter, fixed carbon, and calorific value. From the analysis, sugarcane bagasse as a binder shows the highest quality pellet in terms of mechanical properties. Sugarcane bagasse produces the highest density (0.967g/cm3), bulk density (0.4094), durability (99.71%), shatter index (98.85%), water resistance (98.35%), and thermal properties, which are the highest volatile matter (94.71%) and the lowest ash content (1.71%). In a nutshell, sugarcane bagasse is a good binder that gives a positive impact to the K.senegalensis pellets in terms of storage and transportation compared to corn cob and rice husk binder.
  • Publication
    Mechanical and physical properties of khaya senegalensis solid fuel pellet with different binder percentages
    The characteristics of the solid fuel pellets, such as its strength, durability and density can be used to assess its quality. During the transport and storage, pellets with low strength and durability produces dusts and ultimately resulting in equipment blockage, high pollution emissions, and an increased risk of fire and explosion. Therefore, pellet manufacturing process should be given priority to improve pellet quality. The use of binder in the production of pellets will aid in improving pellet quality. Therefore, this study investigates the influence of different binder percentages on the mechanical properties of K. senegelensis fuel pellets. Durability, unit density, bulk density and diametral compressive strength testing were carried out in compliance with international standards. It was discovered that pellets containing 4% cassava starch binder produces better results, particularly in terms of durability and compressive ldiametral strength.