Now showing 1 - 4 of 4
  • Publication
    A novel nucleus detection on pap smear image using mathematical morphology approach
    The fourth most common form of cancer among women is cervical cancer with 569, 847 new cases and 311, 365 reported deaths worldwide in 2018. Cervical cancer is classified as the third leading cause of cancer among women in Malaysia, with approximately 1, 682 new cervical cases and about 944 deaths occurred in 2018. Cervical cancer can be detected early by cervical cancer screening. Papanicolaou test, also known as Pap smear test is conducted to detect cancer or pre-cancer in the cervix. The disadvantage of this conventional method is that the sample of microscopic images will risk blurring effects, noise, shadow, lighting and artefact problems. The diagnostic microscopic observation performed by a microbiologist is normally time-consuming and may produce inaccurate results even by experienced hands. Thus, correct diagnosis information is essential to assist physicians to analyze the condition of the patients. In this study, an automated segmentation system is proposed to be used as it is more accurate and faster compared to the conventional technique. Using the proposed method in this paper, the image was enhanced by applying a median filter and Partial Contrast Stretching. A segmentation method based on mathematical morphology was performed to segment the nucleus in the Pap smear images. Image Quality Assessment (IQA) which measures the accuracy, sensitivity and specificity were used to prove the effectiveness of the proposed method. The results of the numerical simulation indicate that the proposed method shows a higher percentage of accuracy and specificity with 93.66% and 95.54% respectively compared to Otsu, Niblack and Wolf methods. As a conclusion, the percentage of sensitivity is slightly lower, with 89.20% compared to Otsu and Wolf methods. The results presented here may facilitate improvements in the detection performance in comparison to the existing methods.
  • Publication
    Contrast enhancement approaches on medical microscopic images: a review
    Nowadays, there are many method for medical identification that exist for example based on microscopic and nonmicroscopic. Microscopic is a method that use microscope to capture an image and identify the disease based on the image captured. The image quality of medical image is very important for patient diagnosis. Image with poor contrast and the quality of the image is not good may lead to the mistaken decision, even in experienced hands. Therefore, contrast enhancement methods was proposed in order to enhance the image quality. Contrast enhancement is a process that improves the contrast of an image to make various features more easily perceived. Contrast enhancement is widely used and plays important roles in image processing application. This paper review the contrast enhancement techniques was used in microscopic images. There are microscopic images for cervical cancer, leukemia, malaria, tuberculosis and anemia.
  • Publication
    Color contrast enhancement on pap smear images using statistical analysis
    ( 2021-01-01)
    Nahrawi N.
    ;
    ; ;
    Mashor M.Y.
    In the conventional cervix cancer diagnosis, the Pap smear sample images are taken by using a microscope,causing the cells to be hazy and afflicted by unwanted noise. The captured microscopic images of Pap smear may suffer from some defects such as blurring or low contrasts. These problems can hide and obscure the important cervical cell morphologies, leading to the risk of false diagnosis. The quality and contrast of the Pap smear images are the primary keys that could affect the diagnosis’ accuracy. The paper's main objective is to propose the best contrast enhancement to eliminate contrast problems in images and cor-rect them in color images to ensure smooth segmentation. In this paper, the med-ian and standard deviation are used for the image's global and local data where the problem region is normalized by using a special proposed formula. The expected resulting image shows only the object (nuclei and cytoplasm), and a background without any noise. The results were compared with CLAHE, HE, and Gray World, and the performance was evaluated based on PSNR, RMSE, and MAE. Proposed method shows higher PSNR and RMSE value while lower value for MAE compared to other methods. This paper's main impact will help doctors in identifying the patient's disease, such as cervical cancer, based on a Pap smear analysis, and increase the accuracy percentages as compared to the conventional method.
  • Publication
    Intelligent Classification Procedure for Plasmodium Knowlesi Malaria Species
    ( 2022-01-01) ;
    Mohd Yusoff Mashor
    ;
    Mohamed Z.
    ;
    Jusman Y.
    ;
    ; ;
    Plasmodium knowlesi (PK) is the fifth most prevalent malarial parasite species that causes serious health problems. Generally, PK present in a thin blood smear is observed using a microscope to differentiate between trophozoites (PKT), schizonts (PKS), gametocytes (PKG), and white blood cells (WBCs). This process is time-consuming and strenuous for the human eye. This study developed an intelligent classification procedure for PK using image processing and classification methods. The processes involved starting from image acquisition, and contrast enhancement based on Combination Local and Global Statistical Data (CLGSD), and local contrast stretching (LCS). Subsequently, a segmentation procedure was developed to segment the malaria images into two regions, namely malarial parasites and background regions. The proposed 16 feature sets were extracted, which consisted of the size of the object, size ratio of the object per infected RBC, and seven moments for each object shape based on size and perimeter. Finally, to validate the procedure performance, the proposed procedure was tested using 800 malarial parasites and WBC images. The results showed that the proposed procedure can classify three stages of PK, namely PKT, PKS, and PKG, as well as WBCs with an accuracy of 99.56% for training and 98.84% for validation, using a multi-layer perceptron (MLP) trained using the Levernberg-Marquardt (LM) algorithm.
      1