Now showing 1 - 4 of 4
  • Publication
    The design and analysis of high Q factor film bulk acoustic wave resonator for filter in super high frequency
    Filtering process is one of the highlighted issues when the operating frequency is up to medium or high GHz range in wireless transceiver system. The development of high performance, small size, filter on chip operating in GHz frequency range is the requirement of present and future wireless transceiver systems. The conventional frequency bands, below 6 GHz are already congested, thus, to satisfy this demand, the research into transceiver systems working at frequencies higher than 6 GHz has been growing. Therefore, this work proposed the design and optimization of film bulk acoustic wave resonator (FBAR) operating in frequency 7 GHz to 10 GHz with high quality (Q) factor. The effect of using different geometrical parameters to achieve high Q factor FBAR in these frequency bands is analysed. The designed FBAR achieved Q factor of 1767 at 7 GHz and 1237 at 10 GHz by using aluminium nitride as the piezoelectric thin film and molybdenum as the electrode.
  • Publication
    The Design and Analysis of High Q Factor Film Bulk Acoustic Wave Resonator for Filter in Super High Frequency
    Filtering process is one of the highlighted issues when the operating frequency is up to medium or high GHz range in wireless transceiver system. The development of high performance, small size, filter on chip operating in GHz frequency range is the requirement of present and future wireless transceiver systems. The conventional frequency bands, below 6 GHz are already congested, thus, to satisfy this demand, the research into transceiver systems working at frequencies higher than 6 GHz has been growing. Therefore, this work proposed the design and optimization of film bulk acoustic wave resonator (FBAR) operating in frequency 7 GHz to 10 GHz with high quality (Q) factor. The effect of using different geometrical parameters to achieve high Q factor FBAR in these frequency bands is analysed. The designed FBAR achieved Q factor of 1767 at 7 GHz and 1237 at 10 GHz by using aluminium nitride as the piezoelectric thin film and molybdenum as the electrode.
      2
  • Publication
    Optimization of Symmetric Inductor Parameter for a High Q-Factor Inductor for Wireless Application
    A high Q-factor (Quality Factor) inductor is essential in Radio Frequency (RF) circuits to achieve demanding specifications for low power consumption and low cost. One of the primary disadvantages of Si-based IC advancements for RF circuit configuration is the Low Q-factor inductor because of the thin metallization and Si substrate loss. This paper presents the comparative analysis of various inductor topologies for high-quality (Q) factor inductors using HFSS software for the high-frequency band in the range between 10GHz and 20GHz. Three topologies of inductors are designed, which are square, circular, and symmetric. Comparison is made amongst the three to determine the highest Q-factor. Inductors are designed on Silicon-On-Sapphire (SOS) because of their advantages having high resistivity and low parasitic capacitance. The analysis of various topologies inductors on the Q-factor, inductance, and resistance are inspected. Results show that the symmetric inductor has the highest Q-factor of 101.002 at 44.2 GHz for 0.198nH and a Q-factor of 60.038 at 12GHz inductance 0.178nH with the same parameter. Further optimization of the parameters such as width, the thickness of metal, and outer diameter for the symmetric inductor shows that the highest Q-factor of 50.22 at 12GHz has been achieved. This paper concludes that the inductor's symmetric topology designed on the SOS substrate has a high Q-factor in the range of 10GHz to 20GHz compared to the square and circular inductor.
      1
  • Publication
    Analysis on Square and Circular Inductor for a High Q-Factor Inductor
    This paper presents the high-quality (Q) factor inductors using Silicon-on-sapphire (SOS) for the 10GHz to 20GHz frequency band. Inductors are designed on SOS because of their advantages, including high resistivity and low parasitic capacitance. This paper compares square and circular inductor topologies for high-quality (Q) factor inductors using HFSS software for the high-frequency band. Both inductors have been designed with the same width and thickness to make them comparable with each other. The comparison shows that a circular inductor achieves the highest Q-factor. Furthermore, the circular and square inductor's Q-factor, inductance, and resistance are analyzed. As a result, the circular inductor has the maximum Q-factor of 89.34 at 10.6GHz for 0.29nH, while the square inductor has obtained a maximum Q-factor of 80.72 at 10GHz for 0.40nH inductance.
      3