Now showing 1 - 3 of 3
  • Publication
    Crumb rubber geopolymer mortar at elevated temperature exposure
    ( 2022) ; ;
    Che Mohd Ruzaidi Ghazali
    ;
    ;
    Ramadhansyah Putra Jaya
    ;
    ;
    Mohammad A. Almadani
    ;
    Wysłocki, Jerzy J.
    ;
    Agata Åšliwa
    ;
    Andre Victor Sandu
    Low calcium fly ash is used as the main material in the mixture and the crumb rubber was used in replacing fine aggregates in geopolymer mortar. Sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) which were high alkaline solution were incorporated as the alkaline solution. The fly ash reacted with the alkaline solution forming alumino-silicate gel that binds the aggregate to produce a geopolymer mortar. The loading of crumb rubber in the fly ash based geopolymer mortar was set at 0%
  • Publication
    Effect of NaOH molar concentration on microstructure and compressive strength of Dolomite/Fly Ash-Based geopolymers
    ( 2021)
    Emy Aizat Azimi
    ;
    M.A.A. Mohd Salleh
    ;
    ;
    Ikmal Hakem A. Aziz
    ;
    ;
    Jitrin Chaiprapa
    ;
    Petrica Vizureanu
    ;
    Sorachon Yoriya
    ;
    Marcin Nabiałek
    ;
    Jerzy J. Wyslocki
    Dolomite can be used as a source of aluminosilicate to produce geopolymers; however, this approach is limited by its low reactivity. This study analyzes the viability of producing geopolymers using dolomite/fly-ash with sodium silicate and NaOH solutions (at multiple concentrations) by determining the resultant geopolymers’ compressive strengths. The dolomite/fly-ash-based geopolymers at a NaOH concentration of ~22 M resulted in an optimum compressive strength of 46.38 MPa after being cured for 28 days, and the SEM and FTIR analyses confirmed the denser surface of the geopolymer matrix. The synchrotron micro-XRF analyses confirmed that the Ca concentration exceeded that of Si and Mg, leading to the formation of calcium silicate hydrate, which strengthens the resulting geopolymers.
  • Publication
    Assessment of the suitability of ceramic waste in geopolymer composites: an appraisal
    ( 2021)
    Ismail Luhar
    ;
    Salmabanu Luhar
    ;
    ;
    Marcin Nabiałek
    ;
    Andrei Victor Sandu
    ;
    Janusz Szmidla
    ;
    Anna Jurczyńska
    ;
    Rafiza Abdul Razak
    ;
    Ikmal Hakem A Aziz
    ;
    ;
    Laila Mardiah Deraman
    Currently, novel inorganic alumino-silicate materials, known as geopolymer composites, have emerged swiftly as an ecobenevolent alternative to contemporary ordinary Portland cement (OPC) building materials since they display superior physical and chemical attributes with a diverse range of possible potential applications. The said innovative geopolymer technology necessitates less energy and low carbon footprints as compared to OPC-based materials because of the incorporation of wastes and/or industrial byproducts as binders replacing OPC. The key constituents of ceramic are silica and alumina and, hence, have the potential to be employed as an aggregate to manufacture ceramic geopolymer concrete. The present manuscript presents a review of the performance of geopolymer composites incorporated with ceramic waste, concerning workability, strength, durability, and elevated resistance evaluation.