Research Output

conference proceeding conference...
Now showing 1 - 2 of 2
  • Publication
    Surface characterization study of nanoporous anodic aluminium oxide thin film synthesized by single-step anodization
    Nanoporous anodic aluminium oxide (AAO) thin film electrodes were prepared by using a single step anodization method in 0.3 M oxalic acid at 40 V for 1 h. Electrolyte temperature was controlled and maintained at 15 °C by using ice water bath. After anodized, AAO surfaces were etched by using 5% phosphoric acid (H3PO4) solution at 30 °C to remove the AAO top rough surfaces and widening the pores. Effect of different etching duration to the pore widening was investigated at 10, 20 and 30 minutes, respectively. Regularity of the pores arrangements before and after etching were analysed by fast fourier transform (FFT) profile images that were generated from FESEM images. From observation, well ordered nanoporous structures were successfully revealed after top rough surfaces were removed by etching. Pores sizes were also found to be increased with the increasing of etching duration. Further investigations were done by x-ray diffraction (XRD) analysis and fourier transform infra-red spectroscopy (FTIR) to characterize and find out the crystallinity properties and functionalities of AAO thin film electrode surfaces.
  • Publication
    Mechanical and physical properties of bottom ash/fly ash geopolymer for pavement brick application
    ( 2020-03-18)
    Wan Ibrahim W.M.
    ;
    ;
    Ahmad R.
    ;
    ; ;
    Noor Azli M.A.A.
    Geopolymers are amorphous to semi-crystalline with excellent physical and and mechanical properties. It has been used to become a potential binder to Ordinary Portland Cement (OPC) in certain applications due to its lower emission of carbon dioxide gases and low energy consumption sustainability criteria. Bottom Ash (BA) is one of the main industrial by-products and it is produced at the bottom of the furnace during the coal combustion process in electricity generation. The application of BA as a sustainable construction material in the building industry plays an important role in order to decrease the volume of residual waste and conserving existing natural fine aggregates. The objectives for this study is to study the effect of fly ash to bottom ash ratio and to determine the optimum ratio of fly ash to bottom ash geopolymer for pavement brick application. The chemical composition and morphology of geopolymer reinforcement was analysed by using X-ray Fluorescence and Scanning Electron Microscope. The molarity of the Sodium Hydroxide solution is fixed at 12M. The parameter used in this study are different weight percentage of fly ash geopolymer 0 wt%, 10 wt%, 20 wt%, 30 wt% and 40 wt%. The solid to liquid ratios for this study is 2.0. The curing temperature of this study is 80°C and the curing time is 24 hours. 100% of bottom ash geopolymer is used as a control variable for this study.
      2  1