Now showing 1 - 2 of 2
  • Publication
    Prediction of maximum spreading time of water droplet during impact onto hot surface beyond the Leidenfrost temperature
    ( 2021-12-01) ; ;
    Rahim Y.A.
    ;
    ; ;
    Ismail K.A.
    ;
    Ani M.H.
    When a water droplet impacts on a heated surface in the film boiling regime, it will spread, recede, and finally bounce off from the heated surface. These unique liquid-solid interactions only occur at high surface temperatures. Our main objective in this research is to measure the maximum spreading and residence time of the droplet and the findings were compared to theory. We focused our study in the film boiling regime. Brass material was selected as the test surface and was polished until it became a mirror polished surface. The temperature range for this experimental work was between 100 °C up to 420 °C. Degassed and distilled water was used as the test liquid. The high speed video camera recorded the images at the rate of 10,000 frames per second (fps). As a result, it was found that the experimental value of maximum spreading and residence time agreed closely with the theoretical calculation. A new empirical formula that can be used to predict the maximum spreading time in the film boiling regime is also proposed.
  • Publication
    Phase transformations of Langkawi ilmenite ore during carbothermal reduction using palm char as renewable reductant
    ( 2022-02-01)
    Mohammed A.I.
    ;
    ; ;
    Nur Hazira Najmi
    ;
    ;
    Nomura, Takahiro
    The phase transformations of carbothermal reduction of Langkawi ilmenite ore by palm char were studied in reduction temperatures ranging from 1200 °C, 1300 °C, and 1400 °C using a horizontal tube furnace with inert argon gas. The palm shells as renewable carbon reductant for carbothermal reduction of ilmenite ore were converted into palm char using pyrolysis techniques to improve and increase the surface area and carbon content. The present study aims to reduce oxides in ilmenite ore from our local mining to produce titanium oxides by carbothermal reduction process and recycled agricultural waste from palm shell as renewable reductant. The phase and chemical compositions of ilmenite ore and reduced samples were analyzed by XRD and XRF. It was found that ilmenite ore mainly contained titanomagnetite, hematite, and titanium dioxide phases. After carbothermal reduction, the titanomagnetite phase from ilmenite ore was transformed into titanium dioxide, iron titania, iron, and titanium carbide at the highest reduction temperature (1400 °C) via XRD analysis. The phase transformation revealed the porous structure with wider pore size distribution and high carbon from palm char was able to reduce the oxides in ilmenite ore. According to XRF analysis, the TiO2 amount was increased with the temperature; from 25.7 wt.% at 1200 °C up to 50.8 wt.% with the extent of reduction of TiO2 was 78.56% at 1400 °C. The carbothermal reduction of ilmenite ore using palm char as a renewable reductant was possible and promising in mineral ore extractions.