Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. Prediction of maximum spreading time of water droplet during impact onto hot surface beyond the Leidenfrost temperature
 
Options

Prediction of maximum spreading time of water droplet during impact onto hot surface beyond the Leidenfrost temperature

Journal
Case Studies in Thermal Engineering
ISSN
2214157X
Date Issued
2021-12-01
Author(s)
Suhaimi Illias
Universiti Malaysia Perlis
Suhaila Hussain
Universiti Malaysia Perlis
Rahim Y.A.
Muhammad Asri Idris
Universiti Malaysia Perlis
Mohamad Ezral Baharudin
Universiti Malaysia Perlis
Ismail K.A.
Ani M.H.
DOI
10.1016/j.csite.2021.101396
Abstract
When a water droplet impacts on a heated surface in the film boiling regime, it will spread, recede, and finally bounce off from the heated surface. These unique liquid-solid interactions only occur at high surface temperatures. Our main objective in this research is to measure the maximum spreading and residence time of the droplet and the findings were compared to theory. We focused our study in the film boiling regime. Brass material was selected as the test surface and was polished until it became a mirror polished surface. The temperature range for this experimental work was between 100 °C up to 420 °C. Degassed and distilled water was used as the test liquid. The high speed video camera recorded the images at the rate of 10,000 frames per second (fps). As a result, it was found that the experimental value of maximum spreading and residence time agreed closely with the theoretical calculation. A new empirical formula that can be used to predict the maximum spreading time in the film boiling regime is also proposed.
Funding(s)
Ministry of Higher Education, Malaysia
Subjects
  • Droplet impact | Film...

File(s)
Research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies