Options
Muhamad Saifuldin Abdul Manan
Preferred name
Muhamad Saifuldin Abdul Manan
Official Name
Muhamad Saifuldin , Abdul Manan
Alternative Name
Abdul Manan, M. S.
Abdul Manan, Muhamad Saifuldin
Main Affiliation
Scopus Author ID
58144906800
Researcher ID
IUT-1042-2023
FNB-4445-2022
Now showing
1 - 4 of 4
-
PublicationNumerical and Experimental Investigation on Aluminium 6061 Solid Cylindrical Bar Subjected to Close-in Blast Loading( 2024-01-01)
;Zaidi A.M.A.Chong P.L.Compaction force generated by blasting load requires strong material such as steel to act as a plunger to spread the force evenly. The problem with this method is retaining the plunger's original dimension from intolerable deformation. This paper uses ABAQUS software to study the ability to predict the response of solid cylindrical aluminium bars (6061) subjected to different close-in blast loads. The solid cylindrical aluminium bars treated as a plunger were evaluated numerically using a combination of the finite element method (FEM) and smoothed particle hydrodynamic (SPH) methods. The plunger was simulated using the Johnson-Cook (J.C.) model, and Jones-Wilkins-Lee (JWL) equation parameters modelled the explosive. Field tests were conducted by detonating explosives of two different weights, which are 100g and 250g, in the designated blast area. Both data and observation were compared and analysed regarding deformation behaviour in term of dimension difference and fracture. Based on the graph of the deformation dimension versus the plunger length, the deformation trend shows a very close relation between numerical and experimental data with a percentage error of less than 4%. The fracture mode generated using FEM is comparable to the actual specimen. This fracture mode can be described as similar to the behaviour of the specimen obtained using the Taylor impact test. Thus, it can be concluded that the numerical analysis performed for this study is consistent with the actual results. -
PublicationThe Effects of Self-Polymerized Polydopamine Coating on Mechanical Properties of Polylactic Acid (PLA)–Kenaf Fiber (KF) in Fused Deposition Modeling (FDM)( 2023-06-01)
;Salit M.S. ;Yidris N. ;Showkat Ali S.A.This research examines the impact of self-polymerized polydopamine (PDA) coating on the mechanical properties and microstructural behavior of polylactic acid (PLA)/kenaf fiber (KF) composites in fused deposition modeling (FDM). A biodegradable FDM model of natural fiber-reinforced composite (NFRC) filaments, coated with dopamine and reinforced with 5 to 20 wt.% bast kenaf fibers, was developed for 3D printing applications. Tensile, compression, and flexural test specimens were 3D printed, and the influence of kenaf fiber content on their mechanical properties was assessed. A comprehensive characterization of the blended pellets and printed composite materials was performed, encompassing chemical, physical, and microscopic analyses. The results demonstrate that the self-polymerized polydopamine coating acted as a coupling agent, enhancing the interfacial adhesion between kenaf fibers and the PLA matrix and leading to improved mechanical properties. An increase in density and porosity was observed in the FDM specimens of the PLA–PDA–KF composites, proportional to their kenaf fiber content. The enhanced bonding between kenaf fiber particles and the PLA matrix contributed to an increase of up to 13.4% for tensile and 15.3% for flexural in the Young’s modulus of PLA–PDA–KF composites and an increase of up to 30% in compressive stress. The incorporation of polydopamine as a coupling agent in the FDM filament composite led to an improvement in tensile, compressive, and flexural stresses and strain at break, surpassing that of pure PLA, while the reinforcement provided by kenaf fibers was enhanced more by delayed crack growth, resulting in a higher strain at break. The self-polymerized polydopamine coatings exhibit remarkable mechanical properties, suggesting their potential as a sustainable material for diverse applications in FDM.2 -
PublicationEffect of kenaf fiber loading on the tensile properties of 3D printing PLA filament( 2023-01-01)
;Lau H.Y. ;Ibrahim M.As know Polylactic acid (PLA) is a popular and widely used thermoplastic material used in fused filament fabrication (FDM) due to its biodegradability and biocompatibility. As PLA was identified as a brittle material, reinforcement was used to enhance the properties of the PLA. This paper aims to study the effect of using various kenaf volume ratios on the tensile properties of the 2003D PLA filament for 3D printing. The study began by extruding 2003D grade PLA pellet from Ingeo NatureWorks into a single filament extruder machine with an extrusion temperature of 190 °C and a screw rate of 7 rpm. The 90° raster angle of line infill pattern with 100 % infill density were used for the 3D printing specimens. Mechanical test standards such as ASTM D638, was used for tensile testing to analyse the quality of the extruded PLA single filament. As result, the with kenaf fibre loading of 15 % shows the optimum tensile properties among the filler loading, hence it is proven that the tensile properties of the was indeed being enhanced by the additional of the kenaf fibre as reinforcement.1 -
PublicationEffect of loading protocol on the mechanical properties of 316L stainless steel( 2021-10-25)
;Heng S.H. ;Azmi M.S.M.Abdullah S.Two types of loading protocol, i.e., monotonic loading and cyclic loading, were compared to investigate the effect on the mechanical properties of 316L stainless steel. The specimen used is a dog-bone specimen in accordance with ASTM E8 and ASTM E606 standard. For cyclic loading, the multiple-step method is used to obtain the hysteresis loop of the material. A total of 13 strain amplitude conditions had been carried out, ranging from 0.05%-0.65%. The stress-strain curve shows that the cyclic stress-strain curve is higher than the monotonic stress-strain curve due to the cyclic hardening behaviour in the 316L stainless steel. The cyclic hardening behaviour increases the ultimate tensile stress of the material. However, when the material gains its strength through cyclic hardening, the ductility in the material will decrease.1