Options
Mohd Sazli Saad
Preferred name
Mohd Sazli Saad
Official Name
Mohd Sazli , Saad
Alternative Name
Saad, Mohd Sazli
Saad, M. Sazli
Saad, Mohd S.
Saad, M. Sazli
Main Affiliation
Scopus Author ID
57219520932
Researcher ID
Y-4444-2019
Now showing
1 - 3 of 3
-
PublicationReview of Control Strategies for Improving the Photovoltaic Electrical Efficiency by Hybrid Active Cooling( 2024-06-01)
;Edaris Z.L. ;Ali M.H.Photovoltaic (PV) cooling systems are used widely in order to increase the PV efficiency. Most review paper was published for the role, design and cooling techniques of PV applications, there is a lack of collected and organised information regarding the latest and the newest updates on control strategies for PV cooling control systems. Hence, this paper presents a comprehensive review of PV cooling control strategies discussing the latest research works during the years from 2010 to 2022. PV/T hybrid cooling types are highlighted, followed by the main focus of this paper an extensive review of the control schemes for diverse types of PV cooling systems that have been carried out. This paper summarises most of the related work and also pays a special focus on research trends regarding the control of PV cooling systems that have been previously published in the literature. This review paper will be helpful to new researchers when identifying research directions for this particular area of interest. -
PublicationModeling, experimental investigation and real-time control of active water cooling system for photovoltaic module( 2024-01-01)
;Hasanuzzaman M.Photovoltaic (PV) cells are integral in harnessing solar energy, yet their performance is hindered by excessive heat generation, impacting efficiency and sustainability. Addressing the challenge of efficiency loss in photovoltaic (PV) cells due to overheating, this study focuses on optimizing active water cooling control for PV modules. The aim is to develop a dynamic, sustainable model and integrate a PID controller tuned by Sine Cosine Algorithm (SCA), targeting optimal operating temperatures. This study introduces a dynamic model and a closed-loop control system to manage PV cell temperature, investigating the correlation between water flow and temperature regulation. Experimental data is gathered using a pseudo-random binary sequence (PRBS) as an excitation signal, forming the foundation of an Auto Regressive eXogenous (ARX) model. The closed-loop system incorporates a PID controller and tuned using the Sine Cosine Algorithm (SCA) to optimize performance. The resulting model is rigorously validated through experimental investigation, demonstrating its precision in capturing the system’s dynamics. Moreover, the implementation of a controller-based cooling system substantiates the model’s practical efficacy. The research demonstrates significant improvements when implementing a controller-based water-cooling system for photovoltaic (PV) modules. Compared to the baseline scenario without cooling, the system achieves a 34.5% reduction in average PV temperature (from 59.2°C to 38.9°C) and a 9.46% increase in average power output (from 196.7W to 215.3W). Moreover, this system utilizes only 248.8 liters of water, marking a substantial 64% decrease in water consumption compared to traditional free-flow cooling methods, which use 790.9 liters. The research demonstrates that the controller-based cooling approach is a sustainable option, delivering power output comparable to the free-flow method, yet significantly lowering water consumption. This research signifies a turning point for sustainability, offering an efficient and water-conscious approach for enhancing PV system performance, a crucial step toward a greener and more environmentally responsible energy future. -
PublicationPower Generation Improvement using Active Water Cooling for Photovoltaic (PV) Panel( 2021-01-01)
;Nalini C. ;Edaris Z.L.B.Hasanuzzaman M.Photovoltaic (PV) cooling systems are commonly used to improve photovoltaic panels power generation and efficiency. Photovoltaic (PV) panels require irradiance to generate power, although increasing irradiance is often correlated with increasing temperature. These rapid increases of temperature in photovoltaic (PV) panels severely affect the power conversion operation. With a proper cooling process on its surface, a solar photovoltaic (PV) system can operate at a higher efficiency. This research aims to study the power improvement of active water-cooling on photovoltaic (PV) panels. A fixed minimum water flow of 5.80 l/min is sprayed onto the panel's front surface to reduce the temperature. The sprayed water created a thin water film and managed to reduce the temperature. Other than that, there is also reference photovoltaic (PV) panel, which is a panel without any cooling system. The outputs compared are the module temperature, maximum output power, open circuit voltage, and short circuit current. As the irradiance starts increasing, the panel temperature also begins to spike. However, with active water cooling, the temperature was able to be reduced by 37.67% during the day's hottest temperature. This reduction of temperature creates power improvement to the cooled panel up to 253W, compared to the reference panel output of only 223W. During the overheating of a photovoltaic (PV) panel, the open circuit voltage was found to be the most affected. This increase in power with active water cooling can potentially have a massive impact on large-scale photovoltaic (PV) panel installations.