Options
Liyana Jamaludin
Preferred name
Liyana Jamaludin
Official Name
Liyana, Jamaludin
Alternative Name
Liyana, J.
Jamaludin, Liyana
Main Affiliation
Scopus Author ID
55562056000
Researcher ID
M-4804-2019
Now showing
1 - 2 of 2
-
PublicationFly Ash porous material using geopolymerization process for high temperature exposure( 2012-04-10)
;Mohamed Bnhussain ;Che Mohd Ruzaidi GhazaliMohd Izzat AhmadThis paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure. -
PublicationFly ash porous material using geopolymerization process for high temperature exposure( 2012)
;Mohamed BnhussainMohd Izzat AhmadThis paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure.