Now showing 1 - 2 of 2
  • Publication
    A hybrid modified method of the sine cosine algorithm using latin hypercube sampling with the cuckoo search algorithm for optimization problems
    The metaheuristic algorithm is a popular research area for solving various optimization problems. In this study, we proposed two approaches based on the Sine Cosine Algorithm (SCA), namely, modification and hybridization. First, we attempted to solve the constraints of the original SCA by developing a modified SCA (MSCA) version with an improved identification capability of a random population using the Latin Hypercube Sampling (LHS) technique. MSCA serves to guide SCA in obtaining a better local optimum in the exploitation phase with fast convergence based on an optimum value of the solution. Second, hybridization of the MSCA (HMSCA) and the Cuckoo Search Algorithm (CSA) led to the development of the Hybrid Modified Sine Cosine Algorithm Cuckoo Search Algorithm (HMSCACSA) optimizer, which could search better optimal host nest locations in the global domain. Moreover, the HMSCACSA optimizer was validated over six classical test functions, the IEEE CEC 2017, and the IEEE CEC 2014 benchmark functions. The effectiveness of HMSCACSA was also compared with other hybrid metaheuristics such as the Particle Swarm Optimization–Grey Wolf Optimization (PSOGWO), Particle Swarm Optimization–Artificial Bee Colony (PSOABC), and Particle Swarm Optimization–Gravitational Search Algorithm (PSOGSA). In summary, the proposed HMSCACSA converged 63.89% faster and achieved a shorter Central Processing Unit (CPU) duration by a maximum of up to 43.6% compared to the other hybrid counterparts.
      8  27
  • Publication
    1×4 Patch Array All-Textile Antenna for WLAN Applications
    This paper proposes the design of 1×4 patch array all-Textile antenna for Wireless Local Area Networks (WLAN) applications. The wearable antenna needs to have low profile and lightweight since such antenna is intended to operate in the vicinity of the human body. The key parameters are studied to determine their effects towards the performance of the antenna. The proposed design uses ShieldIt as the top radiator and ground plane, while fabric Felt is used as a substrate, sandwiched between the top radiator and ground plane.The obtained results show that there is improvement in the proposed array antenna in terms of gain enhancement and impedance bandwidth, maximum up to 143.6% and 19.08%, respectively, against single patch structure.
      2  33