Options
Kamarulzaman Kamarudin
Preferred name
Kamarulzaman Kamarudin
Official Name
Kamarudin, Kamarulzaman
Alternative Name
Kamarudin, K.
Kamaruddin, Kamarulzaman
Main Affiliation
Scopus Author ID
55193266400
Researcher ID
DVV-8479-2022
Now showing
1 - 2 of 2
-
PublicationDeep Neural Network for Localizing Gas Source Based on Gas Distribution Map( 2022-01-01)
;Zaffry Hadi Mohd Juffry ;Mao X.Abdulnasser Nabil AbdullahThe dynamic characteristic of gas dispersal in uncontrolled environment always leads to inaccurate gas source localization prediction from gas distribution map. Gas distribution map is a representation of the gas distribution over an environment which helps human to observe the concentration of harmful gases at a contaminated area. This paper proposes the utilization of Deep Neural Network (DNN) to predict the gas source location in a gas distribution map. DNN learns from the previous gas distribution map data and patterns to generate a model that is able predict location of gas source. The results indicate that DNN is able to accurately predict the location within the range of 0.8 to 2 m from the actual gas source. This finding shows that DNN has a high potential for utilization in gas source localization application.4 -
PublicationDeep Neural Network for Localizing Gas Source Based on Gas Distribution Map( 2022-01-01)
;Zaffry Hadi Mohd Juffry ;Mao X.Abdullah A.N.The dynamic characteristic of gas dispersal in uncontrolled environment always leads to inaccurate gas source localization prediction from gas distribution map. Gas distribution map is a representation of the gas distribution over an environment which helps human to observe the concentration of harmful gases at a contaminated area. This paper proposes the utilization of Deep Neural Network (DNN) to predict the gas source location in a gas distribution map. DNN learns from the previous gas distribution map data and patterns to generate a model that is able predict location of gas source. The results indicate that DNN is able to accurately predict the location within the range of 0.8 to 2 m from the actual gas source. This finding shows that DNN has a high potential for utilization in gas source localization application.1