Now showing 1 - 4 of 4
  • Publication
    Current trends and risk factors in low back pain: an ergonomic perspective on prevention and management
    Low back pain (LBP) is a global health concern, impacting individuals across various professions and age groups. This review explores the critical role of ergonomic factors in the prevention and management of LBP. Occupational risk factors, including heavy lifting, prolonged sitting, non-neutral postures, and repetitive motions, contribute significantly to the rising prevalence of LBP. Professions such as healthcare, law enforcement, and office work are particularly vulnerable due to their physical demands and static postures. Ergonomic interventions, including task redesign, assistive technologies, and workplace modifications, have proven effective in reducing the incidence of LBP. Dynamic seating, lumbar support devices, and wearable technology are among the innovations that have been introduced to promote healthier postures and reduce musculoskeletal strain. Additionally, ergonomic training programs focusing on proper body mechanics and posture correction are essential for long-term prevention. Beyond physical factors, psychosocial and lifestyle elements, such as stress, sedentary behavior, and smoking, also play a role in the development of LBP. Combining ergonomic interventions with health-promoting behaviors, such as regular physical activity and stress management, can significantly reduce the burden of LBP. Technological advancements, including mobile applications and wearable devices, support adherence to home exercise programs, offering continuous feedback for posture correction and movement. This comprehensive review underscores the need for a multidisciplinary approach that integrates ergonomic interventions, technological tools, and lifestyle modifications to manage and prevent LBP effectively in both occupational and everyday settings.
  • Publication
    Recent advancements in ergonomic risk assessment integration of artificial intelligence, wearable technology, and industry-specific approaches
    Ergonomic risk assessment is crucial in preventing work-related musculoskeletal disorders (WMSDs) across various industries. Traditional methods, while effective, have limitations, such as reliance on manual observations and a lack of real-time monitoring. Recent technological advancements, including artificial intelligence (AI), wearable sensors, and industry-specific solutions, are addressing these gaps. AI and machine learning techniques enable real-time data analysis, providing more accurate and proactive ergonomic assessments. Wearable technology, such as inertial measurement units and pressure sensors, offers continuous monitoring of worker movements and postures, helping to prevent injuries in sectors like healthcare, construction, and manufacturing. These tools also allow for personalized ergonomic interventions by assessing individual risk factors in real-time. Industry-specific approaches have also emerged, particularly in high-risk fields such as healthcare and mining, where the integration of ergonomic and psychosocial stressors provides a comprehensive risk assessment model. In addition to physical ergonomics, advancements now incorporate psychosocial factors, addressing issues like organizational culture and job stress, which significantly influence musculoskeletal health. Finally, technological innovations such as simulation and modeling tools further enhance ergonomic assessments by simulating worker movements and identifying high-risk postures. However, challenges remain in standardizing these tools and integrating them into existing workflows. The evolution of ergonomic risk assessments towards more automated, precise, and real-time systems promises to reduce WMSDs and improve overall workplace safety.
  • Publication
    Recent advances in ergonomic posture research assessing innovations in occupational health and musculoskeletal disorder prevention
    This review paper explores recent advances in ergonomic posture research, focusing on innovations aimed at improving occupational health and preventing musculoskeletal disorders (MSDs). The study covers multiple sectors, including agriculture, manual labor, healthcare, and office environments, highlighting the critical role of ergonomics in mitigating physical strain and enhancing worker well-being. Ergonomic interventions tailored to specific industries have demonstrated significant reductions in physiological strain, improved posture, and increased workplace safety and productivity. In agriculture and manual labor, ergonomic adjustments, such as redesigning operator workstations and utilizing ergonomic tools, have proven effective in reducing the physical demands placed on workers, particularly among traditionally underserved groups like female agricultural workers. In healthcare settings, research emphasizes the importance of posture in surgical and clinical environments, where static postures can lead to MSDs. Wearable technologies and real-time biofeedback systems have emerged as valuable tools for improving ergonomic awareness and reducing the physical toll on workers in these high-demand professions. Office ergonomics has also advanced with the development of dynamic seating systems and posture correction devices that encourage movement and reduce strain caused by prolonged sitting. Such innovations help prevent common MSDs, including back and neck pain, while also enhancing cognitive function and productivity in office environments. This review highlights the growing integration of technological innovations, such as artificial intelligence (AI) and wearable sensors, in posture monitoring and risk assessment. These tools enable real-time feedback, improving both the accuracy of ergonomic interventions and worker safety. The review underscores the need for continued research, uniform ergonomic standards, and the implementation of tailored interventions across industries to promote healthier workplaces and reduce the prevalence of MSDs.
  • Publication
    Advancements in cognitive ergonomics integration with human-robot collaboration, workload management, and industrial applications
    Cognitive ergonomics is increasingly essential in modern industries, particularly in human-robot collaboration (HRC), where it addresses mental workload, decision-making, and overall worker well-being. As industrial systems transition into Industry 4.0 and Industry 5.0, the integration of robotics and artificial intelligence (AI) into human-centered processes necessitates the management of cognitive load. Cognitive ergonomics enhances workplace efficiency by optimizing human-system interactions, reducing mental strain, and improving task performance in complex environments. By focusing on real-time workload management, including the use of biosensors and eye-tracking technologies, industries can monitor cognitive strain, allowing for immediate task adjustments to maintain productivity and safety. Cognitive ergonomics also plays a pivotal role in enhancing human factors in HRC by aligning machine design with human mental capabilities. Effective human-machine interfaces (HMIs) based on cognitive ergonomic principles improve decision-making, reduce errors, and enhance user satisfaction. As industries continue to adopt advanced robotics, the mental demands on workers increase, making cognitive ergonomics crucial for mitigating risks associated with cognitive overload. Future trends point toward the integration of cognitive ergonomics with emerging technologies like AI, wearable devices, and virtual reality (VR), offering new avenues for workload management and decision support. These advancements aim to balance the cognitive demands on workers, ensuring that systems are designed to enhance performance without causing mental fatigue or stress. Overall, cognitive ergonomics remains a vital component in ensuring the well-being and efficiency of workers in technologically advanced industrial environments.