Options
Ahmad Firdaus Ahmad Zaidi
Preferred name
Ahmad Firdaus Ahmad Zaidi
Official Name
Ahmad Firdaus, Ahmad Zaidi
Alternative Name
Ahmad Zaidi, Ahmad Firdaus
Ahmad Firdaus, A. Z.
Zaidi, Ahmad Firdaus Bin Ahmad
Firdaus, A. Z.Ahmad
Main Affiliation
Scopus Author ID
55992689600
Researcher ID
S-8233-2019
Now showing
1 - 4 of 4
-
PublicationFeature extraction for underground object reconstruction from Ground Penetrating Radar (GPR) data( 2022)
;Havenderpal Singh ;Nurush Syamimie Mahmud ;H. Ali ;T.S. Tengku AmranM.R. AhmadGround Penetrating Radar (GPR) is very beneficial for underground object scanning and detection. It utilises radar pulses as the signal, hence it able to penetrate surfaces in obtaining the underneath information without disturbing and destructing the ground. However, its radargram output in hyperbolic signal are very challenging to be analysed. Thus, suitable algorithm has to be designed and developed to interpret the data. This work highlights on the usage of drop-flow algorithm in detecting important features of the hyperbolic signal. Previous study has shown that these features is promising in understanding and further, reconstructing the GPR data. Results show that the features extracted from the hyperbolic signal able to be identified for further processing, which is necessary for visualization purpose. -
PublicationFeature Extraction based on Empirical Mode Decomposition for Shapes Recognition of Buried Objects by Ground Penetrating Radar( 2021-06-11)
;Tengku Sarah Tengku Amran ;Mohamad Ridzuan AhmadGround penetrating radar (GPR) is one of the promising non-destructive imaging tools investigations for shallow subsurface exploration such as locating and mapping the buried utilities. In practical applications, GPR images could be noisy due to the system noise, the heterogeneity of the medium, and mutual wave interactions thus, it is a complex task to recognizing the hyperbolic signature of buried objects from GPR images. Therefore, this paper aims to develop nonlinear feature extraction technique of using Empirical Mode Decomposition (EMD) in recognizing the four geometrical shapes (cubic, cylindrical, disc and spherical) from GPR images. A pre-processing step of isolating hyperbolic signature from different background was first employed by mean of Region of Interest (ROI). The hyperbolic signature that describes the shapes was extracted using EMD decomposition to obtain a set of significant features. In this framework, the hyperbolic pattern was decomposed of using EMD, to produce a small set of intrinsic mode functions (IMF) via sifting process. The IMF properties of the signature that exhibit the unique pattern was used as potential features to differentiate the geometrical shapes of buried objects. The extracted IMF features were then fed into machine learning classifier namely Support Vector Machines. To evaluate the effectiveness of the proposed method, a set data collection of GPR-images has been acquired. The experimental results show that the recognition rate of using IMF features was achieved 99.12% accuracy in recognizing the shapes of buried objects whose shows the promising result. -
PublicationAssessment of Control Drive Technologies for Induction Motor: Industrial Application to Electric Vehicle( 2021-06-11)Zamri Che Mat KasaNowadays electric vehicle has increasingly gained much popularity indicated by growing global share market targeted at 30% by 2030 after recording 7.2million global stock in 2019. Compared to Internal Combustion Engine (ICE) counterpart, Battery Electric Vehicles (BEV) produce zero tailpipe emission which greatly reducing carbon footprints. Induction motor has been widely used and its control technology has evolved from scalar type volt/hertz to recent predictive control technology. This allows induction motor's application to expand from being the workhorse of industry to become prime mover in electric vehicle, where high performance is expected. Among vector control scheme, Direct Torque Control (DTC) has gained interest over Field Oriented Control (FOC) with simpler structure, better robustness and dynamics performance yet suffer from high torque and flux ripple. In electric vehicle applications, high ripple at low speed is highly undesirable, potentially causing torsional vibration. High performance control requires speed sensor integration, which often increase complexity in the design. The work aims to review the best control technology for induction motor in electric vehicle application through performance parameter evaluation such as improvement on dynamic response, torque and flux ripple reduction, and component optimization. Several arise issues in motor control and possible methods to circumvent are highlighted in this work. In conclusion, model predictive torque control (MPTC) is the most promising scheme for electric vehicle with excellent dynamic response, good low speed performance, and 50% torque ripple reduction compared to conventional DTC and potential integration with sliding mode observer for sensorless solution.
-
PublicationA cascade hyperbolic recognition of buried objects using hybrid feature extraction in ground penetrating radar images( 2021-08-27)
;Tengku Amran T.S. ;Ahmad M.R.Ground penetrating radar (GPR) has been acknowledged as effective nondestructive technique for imaging the subsurface. But the process of recognizing hyperbolic pattern of buried objects is subjective and mainly relies upon operator's knowledge and experience. This project proposed a hyperbolic recognition of buried objects using hybrid feature extraction in GPR subsurface mapping. In this framework, a cascade hyperbolic recognition by means of Empirical Mode Decomposition (EMD) and Discrete Wavelet Transform (DWT) are used as hybrid feature recognizing hyperbolic of buried objects. The rationale for an initial focus on cascade hyperbolic recognition is motivated by unique features exhibits by EMD and DWT behaviour in characterizing the hyperbolic pattern which make them particularly well suited to utilities detection in GPR. A series of experiments has been conducted on hyperbolic pattern based on hybrid features using four different geometrical shapes of cubic, cylindrical disc and spherical. Based on the results obtained, the hybrid features of IMF1+ wavelet transform (cH1) shows promising recognition rate in recognizing the hyperbolic that having different geometrical shapes of buried objects.