Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Classification Size of Underground Object from Ground Penetrating Radar Image using Machine Learning Technique
 
Options

Classification Size of Underground Object from Ground Penetrating Radar Image using Machine Learning Technique

Journal
Journal of Physics: Conference Series
ISSN
17426588
Date Issued
2023-01-01
Author(s)
Mohd Shuhanaz Zanar Azalan
Universiti Malaysia Perlis
Esian T.
Hasimah Ali
Universiti Malaysia Perlis
Ahmad Firdaus Ahmad Zaidi
Universiti Malaysia Perlis
Amran T.S.T.
DOI
10.1088/1742-6596/2550/1/012029
Abstract
Ground Penetrating Radar (GPR) is a useful tool in detecting subsurface object or hidden structure defects However, the time-consuming problems and high requirement of professional manpower is required to analyse the GPR data. Machine learning is a tool that endowed with the ability to learn, and it can reduce time taken for the GPR data analysing. To simplify the identification process, a framework is proposed to classify the size of underground metallic pipe by using Histogram of Oriented Gradient (HOG) as a feature extraction algorithm. Two machine learning algorithms namely Support Vector Machines (SVM) and Backpropagation Neural Network were proposed to classify the size of the underground metallic pipe. As a result, the accuracy from the identification is more than 98% for both classifier algorithm.
Subjects
  • Ground Penetrating Ra...

File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies