Options
Anas Abdul Rahman
  Preferred name
    
      
         
        
      
    
    
  
    
      Anas Abdul Rahman
    
  Official Name
    
      
         
        
      
    
    
  
    
      Anas, Abdul Rahman
    
  Alternative Name
    
      
         
        
      
         
        
      
         
        
      
         
        
      
    
    
  
    
      Rahman., A. A.
    
    
      Rahman, Anas
    
    
      Rahman, A. A.
    
    
      Rahman, Anas Abdul
    
  Main Affiliation
    
    
  
  Scopus Author ID
    
      
         
        
      
    
    
  
    
      57193557057
    
  Researcher ID
    
      
         
        
      
    
    
  
    
      P-9313-2018
    
          Now showing 
          1 - 1 of 1
      
      - 
          
          
          PublicationEngine Performance Analysis by Studying Heat Transfer in the Valve Seat through Steady-State Thermal Simulation( 2021-12-14)
 ;Mohamad Aniq Syazwan Mohamed Hassan ; ; ; ; ; ; ; ;Azizul Aziz I. ;Zunaidi Ibrahim ; ;Muhammad Faiz Hilmi Rani ; ;Rishan MuraliAs the engine reached high speed, the exhaust valve temperature increased exponentially due to the exhaust gas produced by the combustion process between the mixture of air and fuel within the combustion chamber of the internal combustion engine. The valve is subjected to thermal loading due to high temperature and pressure within the cylinder, which must withstand a material temperature for sustainable and optimal operation. To avoid this loss, a perfect medium must be prepared to ensure that the heat is extracted smoothly. This can be done when the valve is in contact with the seat and there is a periodic heat transfer contact. Therefore, it is imperative to research the correlation between valve and valve seat to understand the two sections' heat transfer mechanism. In this study, thermal contact analysis was used to identify heat transfer between the valve and the valve seat as both parts are interconnected. This research also has an interest in studying the two surface conduction mechanisms as the exhaust valve closed in steady-state conditions. Thus, this study portrays a significant method, particularly for the determining the distribution of temperature, heat flux, and heat flux direction between the valve and its seat using ANSYS Workbench.2