Options
Abdul Latif Abdul Rani
Preferred name
Abdul Latif Abdul Rani
Official Name
Abdul Latif, Abdul Rani
Alternative Name
Abdul Rani, A.L.
Rani, Abdul Latif Abdul
Abdul Rani, Abdul Latif
Main Affiliation
Scopus Author ID
57211994247
Researcher ID
DWV-8953-2022
Now showing
1 - 6 of 6
-
PublicationNew High Strength Water Retaining Interlocking Pavers Block for High Mechanical Performing Pavement and Reducing Runoff( 2020-03-18)
;Rashid N.A.Interlocking paver blocks are used widely at low speed traffics road especially surrounding building complexes. Interlocking paver blocks are easy to install and provide aesthetic finishing to the landscape. However, usage of interlocking blocks in large areas reduce ground permeability that lead to higher runoff. New interlocking paver blocks were investigated to reduce runoff and the effect on its mechanical performance. Two types of paver block produced which is paver block with permeable concrete and paver block with void in the center. The results show that the compressive strength for paver block with permeable concrete is averagely higher than paver block with void by 31.5% while the flexural strength of all samples were between 1.0 to 1.7 MPa. Paver block with void recorded highest reduction of runoff compared to paver block with permeable concrete which is 25.5%. This is in line with water infiltration test result. It was concluded that the water retaining performance of paver block increase with increment of void volume and increase in void volume caused reduction on compressive strength of interlocking blocks. -
PublicationEffect of operational time on the chemical oxygen demand performance of sequencing batch reactor treating disperse dye synthetic wastewater( 2021-11-26)
;Rashid N.A. ;Mohtar S.A.W. ;Omar M.F. ;Abdullah M.A.H.Noordeka A.This work examines the effect of operational time of 6 hours on the removal of disperse dye from synthetic textile wastewater. Experiments were conducted daily at fill, react, settle, draw, and idle phase at 1 h, 1 h, 2 h, 1 h, 1 h respectively. The results showed that the highest removal efficiency of COD reached 77 %. Short operational time resulted in low COD removal efficiencies of disperse dye. The findings also revealed that when applying optimum operational time, sequencing batch reactor will achieve the highest growth of the bacteria responsible for the degradation of COD. When operational time increases, degradation becomes the dominant removal mechanisms of COD. -
PublicationStudies on factors affecting unconfined compressive strength of industrial rubber sludge containing heavy metals treated using ordinary Portland cement via stabilization/solidification technique( 2020-12-18)
;Rashid N.A. ;Salim A.S.Anuar N.A.I.High concentration of selected heavy metals within industrial rubber sludge collected from rubber industry wastewater treatment plant has classified the waste as scheduled waste. Special treatment to the waste by using ordinary Portland cement via solidification/stabilization (S/S) technique has been performed in laboratory scale. The objective of this research is to determine related factors that affect unconfined compressive strength (UCS) performance of stabilised/solidified (s/s) cube specimens which contains industrial rubber sludge waste. Other parameters observed include the curing condition (i.e. air and water immersion curing method), waste composition, specimen age and density. The prepared fresh mix were cast in plastic moulds in order to produce 50 mm3 cubical shape specimens and leaved to set approximately 24 to 48 hours. The prepared specimen batches are S1 (90% OPC + 10% waste), S2 (70% OPC + 30% waste), S3 (50% OPC + 50% waste). UCS was performed on respective specimen age of 7 and 28 days. Positive results were obtained as relatively the average compressive strength of 7 day air cured specimens reach 5.25 MPa, 5.28 MPa, and 2.16 MPa for S1, S2 and S3.While, 28 days air cured specimens results are 9.59 MPa, 8.01 MPa, and 1.46 MPa for S1, S2, and S3 respectively. As for water immersion, the compressive strengths are 8.19 MPa, 4.93 MPa, and 1.90 MPa for 7 days, and 7.75 MPa, 10.10 MPa, and 2.11 MPa for 28 days at respective S1, S2 and S3 sequence. As conclusion, the specimens prepared passed the minimum requirement for secured landfill disposal which is at 1 MPa. -
PublicationPartially Replacement of Cement by Sawdust and Fly Ash in Lightweight Foam Concrete( 2020-03-18)
;Rashid N.A.The rapid growth of population has led to increased demand for fast, affordable and quality housing development. Today, the construction industry in Malaysia has shifted from conventional methods to Industrial Building Systems (IBS). The most commonly used IBS component is precasat concrete with lightweight foam concrete. This study focuses on the main component of foam lighweight concrete, which is a partially replacement of cement by sawdust and fly ash. Among the features of lightweight concrete is density below 1800 kg/m3. Therefore, the objectives of this study is to determine the effects of sawdust and fly ash as part of cement replacement in terms of mechanical properties (compressive strenght) and physical properties (water absorption). In addition, this study also determine the optimum percentage of cement replacement by sawdust and fly ash in building material. The percentage of saw dust and fly ash used in this study as a partial replacement cement are 5%, 10%, 15% and 20%. The results show that increasing the percentage of mix propotion will increase the water absorption rate as well as decrease the compressive strenght of strength. Also, the density and compressive strength of lightweight foam concrete will decrease as the percentage of partial replacement cement increases. According to JKR Standard Specification for Building Works that referred in Malaysia, the minimum compression strength of lightweight foam concrete allowed for hollow blocks is 2.8 N/mm2. The results obtained from this study show lightweight concrete blocks using saw dust and fly ash as part of the cement replacement meet the standards and can be commercialized in the industrial building system development. -
PublicationEvaluation on physical and chemical properties of treated industrial wastewater sludge containing latex and heavy metals using ordinary Portland cement via stabilization / solidification technique( 2020-07-09)
;Rashid N.A.Industrial wastewater sludge containing latex collected from rubber industry wastewater treatment plant has classified the waste as scheduled waste due to high concentration of selected heavy metals within it. Laboratory scale of special treatment via solidification/stabilization (S/S) technique has been performed to the waste by using ordinary Portland cement. The objective of this research is to evaluate the chemical properties of the raw waste using X-Ray Fluorescence (XRF) and physical properties related to unconfined compressive strength (UCS) performance of stabilised/solidified (s/s) cube specimens. Other factors took into consideration include the curing condition using air and water immersion curing technique, waste addition percentage, specimen age and density. The fresh mix prepared were cast in plastic moulds internal dimension of 50 mm3 producing cubical shape specimens and cured approximately 24 to 48 hours. The prepared specimen batches are A1 (90% OPC + 10% waste), A2 (70% OPC + 30% waste), A3 (50% OPC + 50% waste). Chemical analyses using XRF indicates that raw sludge contains approximately several heavy metals such as Aluminium (30%), Phosphorus, P (17.5%) and Zinc, Zn (11.7%). UCS testing were conducted on 7 and 28 days of specimen age. Positive average compressive strength results of 7 day air cured specimens reach 5.25 MPa, 5.28 MPa, and 2.16 MPa for A1, A2 and A3. Next, 28 days air cured specimens results are 9.59 MPa, 8.01 MPa, and 1.46 MPa for A1, A2, and A3 respectively. As for water immersion, the compressive strengths are 8.19 MPa, 4.93 MPa, and 1.90 MPa for 7 days, and 7.75 MPa, 10.10 MPa, and 2.11 MPa for 28 days at respective A1, A2 and A3 sequence. Based on the UCS performance, the tested specimens surpassed the minimum requirement for secured landfill disposal which is at 1 MPa. -
PublicationThe Application of Coconut Fiber as Insulation Ceiling Board in Building Construction( 2020-07-09)
;Rashid N.A.Illias N.A.This study considers the applications of natural fiber composites in affordable housing projects located in Malaysia with the goal of addressing issues of the thermal comfort. Roof thermal insulation is one of the effective methods that can save cooling energy in places with an equatorial climate especially in Malaysia. The use of recycled products or industrial waste materials is now a potential trend in the industry. Therefore, natural fiber was chosen as a material for the ceiling board in this study. During the day, heat can enter the room from the roof so that insulation material is needed to reduce heat flux by maintaining the temperature of the building. The problems faced by consumers are cost increases due to the use of large amounts of electricity. Besides, asbestos use becoming less frequent because the government has banned its use as a ceiling, side panels, roofing material, asbestos cement-pipes, many types of fireproof and insulation material. The objectives of this study was to determine the mechanical and physical properties of coconut fiber with fire retardant paint as a thermal comfort for ceiling board. The next objective is to study the percentage difference in sodium hydroxide and sodium chloride during the treatment of coconut fiber. The data result is that the fiber is ideal as an insulating material for the house ceiling board because it has a low temperature quality of 0.225W. The water absorption value was as high as 11.20% which is slightly lower than previous studies. Finally, the density test has a value of 74.23 kg / m3 where the fibers are lighter than the other fibers even after immersion with different sodium hydroxide and sodium chloride. In addition, this study achieved a house ceiling that could help reduce the heat entering the house by 0.225W which used only a thickness of 10mm. The use of these fibers does not need the thickness between 20 mm or 40 mm. Therefore, it successfully lowered home electricity consumption in hot weather. It was found that the difference in temperature drop between 0 % and 3 % was 0.4W.