Now showing 1 - 3 of 3
  • Publication
    Development of Driving Simulation Experiment Protocol for the Study of Drivers’ Emotions by using EEG Signal
    The Brain-Computer Interface (BCI) is a field of research that studies the EEG signal in order to elevate our understanding of the human brain. The applications of BCI are not limited to the study of the brain wave but also include its applications. The studies of human emotions specific to the vehicle driver are limited and not vastly explored. The EEG signal is used in this study to classify the emotions of drivers. This research aims to study the emotion classifications (surprise, relax/neutral, focus, fear, and nervousness) while driving the simulated vehicle by analyse the EEG signals. The experiments were conducted in 2 conditions, autonomous and manual drive in the simulated environment. In autonomous driving, vehicle control is disabled. While in manual drive, the subjects are able to control the steering angle, acceleration, and brake pedal. During the experiments, the EEG data of the subjects is recorded and then analyzed.
      1  28
  • Publication
    Detection of Parkinson’s Disease (PD) based on speech recordings using machine learning techniques
    There are some neurodegenerative diseases which are unable to cure such as Parkinson's disease (PD) and Hungtinton's disease due to the death of certain parts in the brain that is affecting older adult. PD is an appalling neurodegenerative health disorder that linked to the nervous system which exert influence on motor functions. PD also often known as idiopathic disorder, environmental and genetic factors related, and the causes of PD remain unidentified. To diagnose PD, the clinicians are required to take the history of brain condition for the patient and undergoes various of motor skills examination. Accurate detection of PD plays a crucial role in aiding and providing proper treatment to the patients. Nowadays, there has been recent interest in studying speech-based PD diagnosis. Extracted acoustic attributes are the most important requirement to predict the PD. The experiment was conducted on speech recording dataset consisting of 240 samples. This work studies on the feature selection method, Least Absolute Shrinkage and Selection Operator (LASSO) with multiple machine learnings such as Random Forest (RF), Deep Neural Network (DNN), Gradient Boosting Machine (GBM) and Support Vector Machine (SVM) as the classifier. Throughout this research, train test split method and k-fold cross validation were implemented to evaluate the performance of the classifiers. Through LASSO, Support Vector Machine Grid Search Cross Validation (SVM GSCV) outperformed other 7 models with 100.00 % accuracy, 97.87 % for recall, 65.00 % for specificity and 97.10 % of AUC for 10-fold cross validation. Finally, Graphical User Interface (GUI) was developed and validated through the prediction over UCI speech recording dataset which achieved 96.67 % accuracy for binary classification with 30 samples.
      3  20
  • Publication
    Detection of Parkinson's Disease (PD) Based on Speech Recordings using Machine Learning Techniques
    There are some neurodegenerative diseases which are unable to cure such as Parkinson's disease (PD) and Hungtinton's disease due to the death of certain parts in the brain that is affecting older adult. PD is an appalling neurodegenerative health disorder that linked to the nervous system which exert influence on motor functions. PD also often known as idiopathic disorder, environmental and genetic factors related, and the causes of PD remain unidentified. To diagnose PD, the clinicians are required to take the history of brain condition for the patient and undergoes various of motor skills examination. Accurate detection of PD plays a crucial role in aiding and providing proper treatment to the patients. Nowadays, there has been recent interest in studying speech-based PD diagnosis. Extracted acoustic attributes are the most important requirement to predict the PD. The experiment was conducted on speech recording dataset consisting of 240 samples. This work studies on the feature selection method, Least Absolute Shrinkage and Selection Operator (LASSO) with multiple machine learnings such as Random Forest (RF), Deep Neural Network (DNN), Gradient Boosting Machine (GBM) and Support Vector Machine (SVM) as the classifier. Throughout this research, train test split method and k-fold cross validation were implemented to evaluate the performance of the classifiers. Through LASSO, Support Vector Machine Grid Search Cross Validation (SVM GSCV) outperformed other 7 models with 100.00 % accuracy, 97.87 % for recall, 65.00 % for specificity and 97.10 % of AUC for 10-fold cross validation. Finally, Graphical User Interface (GUI) was developed and validated through the prediction over UCI speech recording dataset which achieved 96.67 % accuracy for binary classification with 30 samples.
      1  26