Now showing 1 - 4 of 4
  • Publication
    A hybrid modified method of the sine cosine algorithm using latin hypercube sampling with the cuckoo search algorithm for optimization problems
    The metaheuristic algorithm is a popular research area for solving various optimization problems. In this study, we proposed two approaches based on the Sine Cosine Algorithm (SCA), namely, modification and hybridization. First, we attempted to solve the constraints of the original SCA by developing a modified SCA (MSCA) version with an improved identification capability of a random population using the Latin Hypercube Sampling (LHS) technique. MSCA serves to guide SCA in obtaining a better local optimum in the exploitation phase with fast convergence based on an optimum value of the solution. Second, hybridization of the MSCA (HMSCA) and the Cuckoo Search Algorithm (CSA) led to the development of the Hybrid Modified Sine Cosine Algorithm Cuckoo Search Algorithm (HMSCACSA) optimizer, which could search better optimal host nest locations in the global domain. Moreover, the HMSCACSA optimizer was validated over six classical test functions, the IEEE CEC 2017, and the IEEE CEC 2014 benchmark functions. The effectiveness of HMSCACSA was also compared with other hybrid metaheuristics such as the Particle Swarm Optimization–Grey Wolf Optimization (PSOGWO), Particle Swarm Optimization–Artificial Bee Colony (PSOABC), and Particle Swarm Optimization–Gravitational Search Algorithm (PSOGSA). In summary, the proposed HMSCACSA converged 63.89% faster and achieved a shorter Central Processing Unit (CPU) duration by a maximum of up to 43.6% compared to the other hybrid counterparts.
  • Publication
    A hybrid modified sine cosine algorithm using inverse filtering and clipping methods for low autocorrelation binary sequences
    ( 2022-01-01)
    Rosli S.J.
    ;
    ; ; ;
    Mustafa W.A.
    ;
    ; ; ;
    Abdulmalek M.
    ;
    Ariffin W.S.F.W.
    ;
    Alkhayyat A.
    The essential purpose of radar is to detect a target of interest and provide information concerning the target's location, motion, size, and other parameters. The knowledge about the pulse trains' properties shows that a class of signals is mainlywell suited to digital processing of increasing practical importance. A low autocorrelation binary sequence (LABS) is a complex combinatorial problem. The main problems of LABS are low Merit Factor (MF) and shorter length sequences. Besides, the maximumpossibleMF equals 12.3248 as infinity length is unable to be achieved. Therefore, this study implemented two techniques to propose a new metaheuristic algorithm based on Hybrid Modified Sine Cosine Algorithm with Cuckoo Search Algorithm (HMSCACSA) using Inverse Filtering (IF) and clipping method to achieve better results. The proposed algorithms, LABS-IF and HMSCACSA-IF, achieved better results with two large MFs equal to 12.12 and 12.6678 for lengths 231 and 237, respectively, where the optimal solutions belong to the skew-symmetric sequences. TheMFoutperformed up to 24.335% and 2.708% against the state-of-the-art LABS heuristic algorithm, xLastovka, and Golay, respectively. These results indicated that the proposed algorithm's simulation had quality solutions in terms of fast convergence curve with better optimal means, and standard deviation.
  • Publication
    A hybrid modified method of the sine cosine algorithm using latin hypercube sampling with the cuckoo search algorithm for optimization problems
    The metaheuristic algorithm is a popular research area for solving various optimization problems. In this study, we proposed two approaches based on the Sine Cosine Algorithm (SCA), namely, modification and hybridization. First, we attempted to solve the constraints of the original SCA by developing a modified SCA (MSCA) version with an improved identification capability of a random population using the Latin Hypercube Sampling (LHS) technique. MSCA serves to guide SCA in obtaining a better local optimum in the exploitation phase with fast convergence based on an optimum value of the solution. Second, hybridization of the MSCA (HMSCA) and the Cuckoo Search Algorithm (CSA) led to the development of the Hybrid Modified Sine Cosine Algorithm Cuckoo Search Algorithm (HMSCACSA) optimizer, which could search better optimal host nest locations in the global domain. Moreover, the HMSCACSA optimizer was validated over six classical test functions, the IEEE CEC 2017, and the IEEE CEC 2014 benchmark functions. The effectiveness of HMSCACSA was also compared with other hybrid metaheuristics such as the Particle Swarm Optimization–Grey Wolf Optimization (PSOGWO), Particle Swarm Optimization–Artificial Bee Colony (PSOABC), and Particle Swarm Optimization–Gravitational Search Algorithm (PSOGSA). In summary, the proposed HMSCACSA converged 63.89% faster and achieved a shorter Central Processing Unit (CPU) duration by a maximum of up to 43.6% compared to the other hybrid counterparts.
  • Publication
    A hybrid modified sine cosine algorithm using inverse filtering and clipping methods for low autocorrelation binary sequences
    ( 2022-01-01)
    Rosli S.J.
    ;
    ; ; ;
    Mustafa W.A.
    ;
    ; ; ;
    Abdulmalek M.
    ;
    Ariffin W.S.F.W.
    ;
    Alkhayyat A.
    The essential purpose of radar is to detect a target of interest and provide information concerning the target's location, motion, size, and other parameters. The knowledge about the pulse trains' properties shows that a class of signals is mainlywell suited to digital processing of increasing practical importance. A low autocorrelation binary sequence (LABS) is a complex combinatorial problem. The main problems of LABS are low Merit Factor (MF) and shorter length sequences. Besides, the maximumpossibleMF equals 12.3248 as infinity length is unable to be achieved. Therefore, this study implemented two techniques to propose a new metaheuristic algorithm based on Hybrid Modified Sine Cosine Algorithm with Cuckoo Search Algorithm (HMSCACSA) using Inverse Filtering (IF) and clipping method to achieve better results. The proposed algorithms, LABS-IF and HMSCACSA-IF, achieved better results with two large MFs equal to 12.12 and 12.6678 for lengths 231 and 237, respectively, where the optimal solutions belong to the skew-symmetric sequences. TheMFoutperformed up to 24.335% and 2.708% against the state-of-the-art LABS heuristic algorithm, xLastovka, and Golay, respectively. These results indicated that the proposed algorithm's simulation had quality solutions in terms of fast convergence curve with better optimal means, and standard deviation.