Options
Roshazita Che Amat
Preferred name
Roshazita Che Amat
Official Name
Roshazita, Che Amat
Alternative Name
Amat, Roshazita Che
Che Amat, Roshazita
Amat, R. C.
Che Amat, R.
Main Affiliation
Scopus Author ID
55749971400
Now showing
1 - 3 of 3
-
PublicationWorkability and density of concrete containing Coconut Fiber( 2022-01-01)
;Woo Chin KahMoncea AndreeaUse of natural fiber in concrete to enhance the strength of concrete have been used widely and become as part of an alternative building materials. For instance, the use of coconut fiber (CF) which are non-hazardous, environmental-friendly and can improves the engineering properties of concrete. The aim of this study is to identify the workability and density of CF modified concrete. CF were added into the mixture in 3 different amount that is 200 g, 400 g, and 600 g. The size of the cube samples is 100 × 100 × 100 mm and were cured for 14 days, and 28 days. To evaluate the effect of CF in improving the properties of concrete, the properties of ordinary concrete are used as a reference which consist 0% CF. The fresh and hardened densities for all samples also show that when more fiber was added into mixture, densities reduced. As summary, the study shows that by adding CF in concrete reduced the workability and density of concrete. -
PublicationA Properties of Municipal Solid Waste Incineration Fly Ash (IFA) And Cement Used in The Manufacturing of New Inventive Blended Cement( 2022-01-01)
;Izzatul Nurain Che Sang BeriZailani W.W.A.Municipal solid waste incinerator fly (IFA) ash is prone to accumulate high concentration heavy metals. Due to the increasing costs to treat remaining fly ash at the landfill, a lot of research has been done to recycle IFA. This study was focusing on the properties of IFA and cement as main raw materials in new inventive blended cement. The properties of blended cement were also being investigated. Properties of IFA and cement were examined through several test which includes density, specific gravity, X-Ray Fluorescence (XRF), Loss of Ignition (LOI) and through Toxicity Characteristic Leaching Procedure (TCLP) test. The density test and LOI test were also being done for the blended cement. From the tests for IFA and cement, it can be found that density the density of fly ash and cement that has been used for this study were found to be 0.76 g/cm3 and 3.67 g/cm3 respectively. Then, the specific gravity of fly ash and cement were 1.69 and 2.98, accordingly. XRF results shows that both materials have highest content of aluminium, silica and iron, as expected. LOI of fly ash and cement were found to be 17.33 % and 12.33 %, respectively. In terms of the leaching rates of heavy metals (Mn, Ni, Cd, Cr, Cu), only Cd leached at rate 2.39 mg/L, which is above the USEPA's regulatory level, 1.0 mg/L. 5 %, 10 % and 15 % of IFA was mixed with cement to produced blended cement. As the density of blended cement, it was found to be 1.12 g/cm3, 1.08 g/cm3 and 1.09 g/cm3 for each of 5 %, 10 % and 15 % of fly ash in blended cement. -
PublicationReclamation and Reutilization of Incinerator Ash in Artificial Lightweight Aggregate( 2022-01-01)This study focused on the reclamation of ash from incineration process and development of new artificial lightweight aggregate (LWA) that have comparable properties with existing natural coarse aggregate. The main objective of this study is to examine potential use of recycled municipal solid waste incineration (MSWI) ash as raw material in LWA production with a method of cold-bonded pelletization. Two types of incineration ash which is bottom ash (BA) and fly ash (FA) were collected from Cameron Highland Incineration Plant, Malaysia. The properties of BA and FA are studied by means of X-Ray Fluorescence (XRF) and microstructure of these ashes were inspected using Scanning Electron Microscope (SEM). The properties of BALA and FALA produced in this study is examined including loose bulk density, water absorption and aggregate impact value (AIV). From the results of both types of artificial LWA, the lowest loose bulk density of BALA is BALA50 with 564.14 kg/m3and highest is at 831.19 kg/m3. For FALA50, lowest loose bulk density is 573.64 kg/m3and highest is 703.35 kg/m3. Water absorption of BALA and FALA is quite similar with one another in with the value of 23.8% and 22.6%, respectively. Generally, FALA have better qualities of LWA comparing with BALA with lower bulk density and water absorption and can be categorized as strong aggregate. In summary, reclamation and reutilization of incinerator ash has generated acceptable qualities for artificial LWA. Both types of BA and FA shown a great potential to be recycled as additional materials in artificial aggregate production.