Now showing 1 - 2 of 2
  • Publication
    A Properties of Municipal Solid Waste Incineration Fly Ash (IFA) And Cement Used in The Manufacturing of New Inventive Blended Cement
    ( 2022-01-01) ; ; ;
    Izzatul Nurain Che Sang Beri
    ;
    ;
    Zailani W.W.A.
    Municipal solid waste incinerator fly (IFA) ash is prone to accumulate high concentration heavy metals. Due to the increasing costs to treat remaining fly ash at the landfill, a lot of research has been done to recycle IFA. This study was focusing on the properties of IFA and cement as main raw materials in new inventive blended cement. The properties of blended cement were also being investigated. Properties of IFA and cement were examined through several test which includes density, specific gravity, X-Ray Fluorescence (XRF), Loss of Ignition (LOI) and through Toxicity Characteristic Leaching Procedure (TCLP) test. The density test and LOI test were also being done for the blended cement. From the tests for IFA and cement, it can be found that density the density of fly ash and cement that has been used for this study were found to be 0.76 g/cm3 and 3.67 g/cm3 respectively. Then, the specific gravity of fly ash and cement were 1.69 and 2.98, accordingly. XRF results shows that both materials have highest content of aluminium, silica and iron, as expected. LOI of fly ash and cement were found to be 17.33 % and 12.33 %, respectively. In terms of the leaching rates of heavy metals (Mn, Ni, Cd, Cr, Cu), only Cd leached at rate 2.39 mg/L, which is above the USEPA's regulatory level, 1.0 mg/L. 5 %, 10 % and 15 % of IFA was mixed with cement to produced blended cement. As the density of blended cement, it was found to be 1.12 g/cm3, 1.08 g/cm3 and 1.09 g/cm3 for each of 5 %, 10 % and 15 % of fly ash in blended cement.
  • Publication
    Comparing the Physical Properties of Coal Bottom Ash (CBA) Waste and Natural Aggregate
    ( 2022-01-01) ;
    Mohamed Reyad Alhadi Ahmad
    ;
    ; ; ;
    Samsudin S.
    Coal bottom ash (CBA) is a co-combustion product material, which may cause hazards to human health and the environment. Rapid growth in technology causes the increase of CBA waste and this situation led to a waste disposal crisis. Reuse waste material as an alternative material instead of natural materials can led to sustainable and environmentally friendly construction. The main objective of this study is to determine the physical properties of CBA and its suitability to be used as replacement material in civil construction. The physical properties test conducted in this research were aggregate impact value test, aggregate crushed value test, flakiness and elongation test. The results show that the ability of CBA to resist sudden shock and repeated load was lesser than natural aggregate (NA). The differences of aggregate impact value (AIV) and aggregate crushing value (ACV), between NA and CBA were 50.4% and 48.9%, respectively. In addition, CBA has higher amount of flaky and elongated particles compared to NA. The flakiness index value for NA and CBA were 7.12% and 26.10%, respectively while the difference value of elongation index between NA and CBA was 37%. However, even though the properties of CBA were not as good as NA, the results for ACV and the flakiness index of CBA meet the minimum requirement of Jabatan Kerja Raya (JKR) Standard Specification which indicates that CBA has potential to be used in civil construction.