Options
Nur Liza Rahim
Preferred name
Nur Liza Rahim
Official Name
Nur Liza, Rahim
Alternative Name
Rahim, Nur Liza
Rahim, N. L.
Rahim, Nur Alis Addiena A.
Main Affiliation
Scopus Author ID
55754434900
Now showing
1 - 3 of 3
-
PublicationPreservation of Natural Resources by Utilizing Combustion Ash In Concrete and Determination of Its Engineering Properties( 2023-01-01)
;Rahim M.A. ;Zailani W.W.A. ;Laslo L.Muhamad N.Due to the large amount of combustion ash being thrown into landfills, which can lead to environmental pollution, new alternatives to construction materials can be developed by utilising this combustion ash as a part of the main raw materials, while at the same time helping to preserve natural resources in the concrete manufacturing industry. Generally, using new waste materials will eventually affect the engineering properties of concrete. Therefore, the main objective of this study is to analyse the engineering properties of concrete containing combustion ash as a partial replacement for ordinary Portland cement (OPC). CA can be classified as combustion bottom ash (CBA) and combustion fly ash (CFA). CA is tested for its chemical compositions using X-Ray Fluorescence (XRF), and its four main compositions, which are silica, alumina, iron, and calcium, are examined and discussed extensively. Other testing for the property of CA includes Scanning Electron Microscopic (SEM) and specific gravity testing for coarse aggregate. To produce sustainable concrete from waste, several tests have been conducted to determine the engineering properties of the concrete, such as compressive strength, flexural strength, and splitting tensile strength. Results show that CA, which consists mainly of silica dioxide, contributed to the strength of concrete. SEM images show that CBA has a porous structure with an angular and rough texture, whereas CFA has more rounded particles, which influence the overall compressive strength. Furthermore, it was discovered that as the proportion of CBA utilised increased, the compressive strength, flexural strength, and splitting tensile strength of the concrete improved. Based on the results of the testing, CBA is suggested for use as a supplementary cementitious material in concrete. -
PublicationPreservation of natural resources by utilizing combustion ash in concrete and determination of its engineering properties( 2023-01-01)
;Zailani W.W.A. ;Laslo L.Muhamad N.Due to the large amount of combustion ash being thrown into landfills, which can lead to environmental pollution, new alternatives to construction materials can be developed by utilising this combustion ash as a part of the main raw materials, while at the same time helping to preserve natural resources in the concrete manufacturing industry. Generally, using new waste materials will eventually affect the engineering properties of concrete. Therefore, the main objective of this study is to analyse the engineering properties of concrete containing combustion ash as a partial replacement for ordinary Portland cement (OPC). CA can be classified as combustion bottom ash (CBA) and combustion fly ash (CFA). CA is tested for its chemical compositions using X-Ray Fluorescence (XRF), and its four main compositions, which are silica, alumina, iron, and calcium, are examined and discussed extensively. Other testing for the property of CA includes Scanning Electron Microscopic (SEM) and specific gravity testing for coarse aggregate. To produce sustainable concrete from waste, several tests have been conducted to determine the engineering properties of the concrete, such as compressive strength, flexural strength, and splitting tensile strength. Results show that CA, which consists mainly of silica dioxide, contributed to the strength of concrete. SEM images show that CBA has a porous structure with an angular and rough texture, whereas CFA has more rounded particles, which influence the overall compressive strength. Furthermore, it was discovered that as the proportion of CBA utilised increased, the compressive strength, flexural strength, and splitting tensile strength of the concrete improved. Based on the results of the testing, CBA is suggested for use as a supplementary cementitious material in concrete.1 -
PublicationA Properties of Municipal Solid Waste Incineration Fly Ash (IFA) And Cement Used in The Manufacturing of New Inventive Blended Cement( 2022-01-01)
;Izzatul Nurain Che Sang BeriZailani W.W.A.Municipal solid waste incinerator fly (IFA) ash is prone to accumulate high concentration heavy metals. Due to the increasing costs to treat remaining fly ash at the landfill, a lot of research has been done to recycle IFA. This study was focusing on the properties of IFA and cement as main raw materials in new inventive blended cement. The properties of blended cement were also being investigated. Properties of IFA and cement were examined through several test which includes density, specific gravity, X-Ray Fluorescence (XRF), Loss of Ignition (LOI) and through Toxicity Characteristic Leaching Procedure (TCLP) test. The density test and LOI test were also being done for the blended cement. From the tests for IFA and cement, it can be found that density the density of fly ash and cement that has been used for this study were found to be 0.76 g/cm3 and 3.67 g/cm3 respectively. Then, the specific gravity of fly ash and cement were 1.69 and 2.98, accordingly. XRF results shows that both materials have highest content of aluminium, silica and iron, as expected. LOI of fly ash and cement were found to be 17.33 % and 12.33 %, respectively. In terms of the leaching rates of heavy metals (Mn, Ni, Cd, Cr, Cu), only Cd leached at rate 2.39 mg/L, which is above the USEPA's regulatory level, 1.0 mg/L. 5 %, 10 % and 15 % of IFA was mixed with cement to produced blended cement. As the density of blended cement, it was found to be 1.12 g/cm3, 1.08 g/cm3 and 1.09 g/cm3 for each of 5 %, 10 % and 15 % of fly ash in blended cement.4