Options
Norlia Mohamad Ibrahim
Preferred name
Norlia Mohamad Ibrahim
Official Name
Norlia, Mohamad Ibrahim
Alternative Name
Ibrahim, Norlia Mohamad
Norlia, M. I.
Norlia, M.
Ibrahim, N. M.
Mohamad, N.
Main Affiliation
Scopus Author ID
57195339786
Researcher ID
AAV-6726-2021
Now showing
1 - 6 of 6
-
PublicationPreservation of Natural Resources by Utilizing Combustion Ash In Concrete and Determination of Its Engineering Properties( 2023-01-01)
;Rahim M.A. ;Zailani W.W.A. ;Laslo L.Muhamad N.Due to the large amount of combustion ash being thrown into landfills, which can lead to environmental pollution, new alternatives to construction materials can be developed by utilising this combustion ash as a part of the main raw materials, while at the same time helping to preserve natural resources in the concrete manufacturing industry. Generally, using new waste materials will eventually affect the engineering properties of concrete. Therefore, the main objective of this study is to analyse the engineering properties of concrete containing combustion ash as a partial replacement for ordinary Portland cement (OPC). CA can be classified as combustion bottom ash (CBA) and combustion fly ash (CFA). CA is tested for its chemical compositions using X-Ray Fluorescence (XRF), and its four main compositions, which are silica, alumina, iron, and calcium, are examined and discussed extensively. Other testing for the property of CA includes Scanning Electron Microscopic (SEM) and specific gravity testing for coarse aggregate. To produce sustainable concrete from waste, several tests have been conducted to determine the engineering properties of the concrete, such as compressive strength, flexural strength, and splitting tensile strength. Results show that CA, which consists mainly of silica dioxide, contributed to the strength of concrete. SEM images show that CBA has a porous structure with an angular and rough texture, whereas CFA has more rounded particles, which influence the overall compressive strength. Furthermore, it was discovered that as the proportion of CBA utilised increased, the compressive strength, flexural strength, and splitting tensile strength of the concrete improved. Based on the results of the testing, CBA is suggested for use as a supplementary cementitious material in concrete. -
PublicationPreservation of natural resources by utilizing combustion ash in concrete and determination of its engineering properties( 2023-01-01)
;Zailani W.W.A. ;Laslo L.Muhamad N.Due to the large amount of combustion ash being thrown into landfills, which can lead to environmental pollution, new alternatives to construction materials can be developed by utilising this combustion ash as a part of the main raw materials, while at the same time helping to preserve natural resources in the concrete manufacturing industry. Generally, using new waste materials will eventually affect the engineering properties of concrete. Therefore, the main objective of this study is to analyse the engineering properties of concrete containing combustion ash as a partial replacement for ordinary Portland cement (OPC). CA can be classified as combustion bottom ash (CBA) and combustion fly ash (CFA). CA is tested for its chemical compositions using X-Ray Fluorescence (XRF), and its four main compositions, which are silica, alumina, iron, and calcium, are examined and discussed extensively. Other testing for the property of CA includes Scanning Electron Microscopic (SEM) and specific gravity testing for coarse aggregate. To produce sustainable concrete from waste, several tests have been conducted to determine the engineering properties of the concrete, such as compressive strength, flexural strength, and splitting tensile strength. Results show that CA, which consists mainly of silica dioxide, contributed to the strength of concrete. SEM images show that CBA has a porous structure with an angular and rough texture, whereas CFA has more rounded particles, which influence the overall compressive strength. Furthermore, it was discovered that as the proportion of CBA utilised increased, the compressive strength, flexural strength, and splitting tensile strength of the concrete improved. Based on the results of the testing, CBA is suggested for use as a supplementary cementitious material in concrete.1 -
PublicationPerformance of Sugar Cane Baggage Ash (SCBA) as Partially Replacement of Cement in Concrete( 2023-10-04)
;Cheah S.W. ;Ayob A.Sugar cane is main food crop in tropical and subtropical countries. It is the main resource for the sugar production. Sugar cane bagasse (SCB) is a waste that produced after the juice extraction of sugarcane while sugar cane bagasse ash (SCBA) produced after the control burning of SCB. The use of waste products as partial replacement for the material in concrete can help to reduce the environmental and economic problem. Since the cost of construction materials such as cement is increasing spirally and agricultural waste such as SCBA can be obtained at low cost, it has a good potential to use in concrete as cement replacement. In this study, the workability, density, and compressive strength of the concrete been chosen to compare with the green concrete. Three different types concrete cube have been casted in this study, na1111mely; 0, 5%, 7.5%, 10% of SCBA to replace for cement. The size of the cube samples to be casted is 100 x 100 x 100 mm and cured for 7 and 28 days. The study show that the optimum percentage for SCBA concrete is 5%, it give the highest compressive strength value compare to other percentage at 28 days.1 -
PublicationComparing the Physical Properties of Coal Bottom Ash (CBA) Waste and Natural Aggregate( 2022-01-01)
;Mohamed Reyad Alhadi AhmadSamsudin S.Coal bottom ash (CBA) is a co-combustion product material, which may cause hazards to human health and the environment. Rapid growth in technology causes the increase of CBA waste and this situation led to a waste disposal crisis. Reuse waste material as an alternative material instead of natural materials can led to sustainable and environmentally friendly construction. The main objective of this study is to determine the physical properties of CBA and its suitability to be used as replacement material in civil construction. The physical properties test conducted in this research were aggregate impact value test, aggregate crushed value test, flakiness and elongation test. The results show that the ability of CBA to resist sudden shock and repeated load was lesser than natural aggregate (NA). The differences of aggregate impact value (AIV) and aggregate crushing value (ACV), between NA and CBA were 50.4% and 48.9%, respectively. In addition, CBA has higher amount of flaky and elongated particles compared to NA. The flakiness index value for NA and CBA were 7.12% and 26.10%, respectively while the difference value of elongation index between NA and CBA was 37%. However, even though the properties of CBA were not as good as NA, the results for ACV and the flakiness index of CBA meet the minimum requirement of Jabatan Kerja Raya (JKR) Standard Specification which indicates that CBA has potential to be used in civil construction.4 1 -
PublicationExploring the potential of agricultural waste as natural resource-based adsorbents for methylene blue removal( 2024-01-01)
;Muhamad Farid Idham Sulaiman ;Ain Nihla Kamarudzaman ;Syakirahafiza Mohammed ;Deák G.Excessive agricultural waste in the agricultural industry leads to various forms of pollution, including water pollution. To address this issue, there's a growing interest in finding alternative methods. One approach is to utilize agricultural waste as natural resource-based adsorbents to eliminate contaminants, such as the case of methylene blue (MB) in this study. The study specifically focuses on using rice husk (RH) from a local rice mill in Perlis, Malaysia, to absorb methylene blue. The structure of rice husk, characterized by scanning electron microscopy (SEM), reveals a coarser and more compact outer area, contributing to its absorption capacity for methylene blue. The study on rice husk involves three main aspects: contact time, adsorbent dosage, and dye concentration. The removal percentage of MB increased as the three studied adsorption parameters increased. The adsorption data were analyzed using Langmuir and Freundlich adsorption isotherms, with the the Freundlich Isotherms were found to be more suitable based on higher coefficient of correlation (R2) values compared to Langmuir. The pseudo-second-order kinetics model demonstrated a higher R2value (1.00) compared to the pseudo-first-order model (0.747). The results indicate promising potential for addressing pollution through sustainable means and provide insights into the adsorption process under varying conditions.2 -
PublicationA Properties of Municipal Solid Waste Incineration Fly Ash (IFA) And Cement Used in The Manufacturing of New Inventive Blended Cement( 2022-01-01)
;Izzatul Nurain Che Sang BeriZailani W.W.A.Municipal solid waste incinerator fly (IFA) ash is prone to accumulate high concentration heavy metals. Due to the increasing costs to treat remaining fly ash at the landfill, a lot of research has been done to recycle IFA. This study was focusing on the properties of IFA and cement as main raw materials in new inventive blended cement. The properties of blended cement were also being investigated. Properties of IFA and cement were examined through several test which includes density, specific gravity, X-Ray Fluorescence (XRF), Loss of Ignition (LOI) and through Toxicity Characteristic Leaching Procedure (TCLP) test. The density test and LOI test were also being done for the blended cement. From the tests for IFA and cement, it can be found that density the density of fly ash and cement that has been used for this study were found to be 0.76 g/cm3 and 3.67 g/cm3 respectively. Then, the specific gravity of fly ash and cement were 1.69 and 2.98, accordingly. XRF results shows that both materials have highest content of aluminium, silica and iron, as expected. LOI of fly ash and cement were found to be 17.33 % and 12.33 %, respectively. In terms of the leaching rates of heavy metals (Mn, Ni, Cd, Cr, Cu), only Cd leached at rate 2.39 mg/L, which is above the USEPA's regulatory level, 1.0 mg/L. 5 %, 10 % and 15 % of IFA was mixed with cement to produced blended cement. As the density of blended cement, it was found to be 1.12 g/cm3, 1.08 g/cm3 and 1.09 g/cm3 for each of 5 %, 10 % and 15 % of fly ash in blended cement.4