Now showing 1 - 2 of 2
  • Publication
    Plastics in Water Treatment
    Water is essential for many people around the world and needs to be conserved. Recently water shortages are becoming severe and urgent issues to be addressed due to the global population growth coupled with rapid economic developments. Water is considered contaminated when the presence of elevated concentrations of substances in water exceeds the prescribed limits. More efficient water treatments need to be developed to address the worsening clean water shortage. Water treatment facilities made from plastic materials proven to offer more advantages compared to alternative materials. Their unique properties such as lightweight, strength, chemical and corrosion resistance, weather and fire resistance, easy and long-lasting installations contribute to the excellent applications of the water treatment system. Plastic provides many solutions for ensuring the sustainability of water. The choice of plastic types of materials depends on their specific applications. In this article, we introduce different types of plastic and its advantages. The plastic applications in water treatments were also discussed in different fields of human activities such as in water and sewage treatments, irrigation and agriculture, potable water production, aquaculture and ultra-pure water production.
  • Publication
    Degradation of Diazo Congo Red Dye by Using Synthesized Poly-Ferric-Silicate-Sulphate through Co-Polymerization Process
    ( 2023-01-01) ; ; ;
    Ismail H.
    ;
    Walli S.
    ;
    Inoue K.
    ;
    Kawamura G.
    ;
    Tan W.K.
    The ability of poly-ferric-silicate-sulphate (PFSS) synthesized via a co-polymerization process has been applied for the removal of diazo Congo red dye. A novel degradation pathway of diazo Congo red dye by using PFSS is proposed based on LC–MS analysis. Diazo Congo red dye was successfully removed using synthesized PFSS at lower coagulant dosages and a wider pH range, i.e., 9 mg/L from pH 5 to 7, 11 mg/L at pH 9, and 50 mg/L at pH 11. The azo bond cleavage was verified by the UV–Vis spectra of diazo Congo red-loaded PFSS and FTIR spectra which showed disappearance of the peak at 1584 cm−1 for –N=N– stretching vibrations. The synchronized results of UV–Vis spectra, FTIR, and the LC–MS analysis in this study confirmed the significance of the Si and Fe bond in PFSS towards the degradation of diazo Congo red dye. The successfully synthesized PFSS coagulant was characterized by FTIR, SEM, TEM, and HRTEM analysis. From this analysis, it was proven that PFSS is a polycrystalline material which is favorable for the coagulation–flocculation process. Based on all these findings, it was established that synthesized PFSS can be employed as a highly efficient polymeric coagulant for the removal of dye from wastewater.