Options
Aishah Mohd Noor
Preferred name
Aishah Mohd Noor
Official Name
Aishah, Mohd Noor
Alternative Name
Noor, Aishah Mohd
Aishah, M. N.
Noor, A. M.
Main Affiliation
Scopus Author ID
57211319810
Researcher ID
FPN-0307-2022
Now showing
1 - 2 of 2
-
PublicationClassification of White Blood Cells Based on Surf Feature( 2021-01-01)Conventional blood analysis using blood smear image were performed manually by experts in hematology is tedious and highly depending on the level of experience. Currently, computer-assist technology is developed to reduce the time-consuming process and improved accuracy. As an example, various image processing techniques used to quantify such as white blood cells (WBCs) morphological conditions or classification in the blood smear image, which assist experts in developing confidence decision making in the analysis of cells conditions linked to the specific diseases. However, the WBCs shape features are arbitrary than the red blood cells (RBCs) because of the maturation state, cell orientations or positions, cell color variations, and the quality of the image captured influences the performance of classification accuracy. Therefore, we proposed a scale and rotation invariance feature for WBCs classification using speed up robust feature (SURF). SURF is suitable to be applied in identifying objects even though the orientation, scale, and position are varying, such as WBCs in microscopic blood smear images. We analyzed the classification performances using a support vector machine (SVM) and an artificial neural network (ANN) of WBCs types in the microscopic image based on the cell nucleus. The results show that the purposed SURF feature method has an excellent performance of accuracy for both methods and suitable to be utilized for the application of cell types classification.
1 -
PublicationClassifying white blood cells from a peripheral blood smear image using a histogram of oriented gradient feature of nuclei shapes( 2020-06-11)Researchers developed various methods and algorithms to classify white blood cells (WBCs) from blood smear images to assist hematologists and to develop an automatic system. Furthermore, the pathological and hematological conditions of WBCs are related to diseases that can be analyzed accurately in a short time. In this work, we proposed a simple technique for WBC classification from a peripheral blood smear image based on the types of cell nuclei. The developed algorithms utilized a histogram of oriented gradient (HOG) feature typically known for application in human disease detection. The segmentation of WBC nuclei utilizes a YCbCr color space and K-means clustering techniques. The HOG feature contains information about the cell nuclei shapes, which then is classified using a support vector machine (SVM) and backpropagation artificial neural network (ANN). The results show that the proposed HOG feature is useful for WBC classification based on the shapes of nuclei. We are able to categorize the type of a WBC based on its nucleus shape with more than 95% accuracy.