Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2024
  5. Experimental investigation on the microdefects formation due to the electrical discharge coating process: A fractional factorial design
 
Options

Experimental investigation on the microdefects formation due to the electrical discharge coating process: A fractional factorial design

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2024-03-07
Author(s)
Ahmad Fairuz Mansor
Universiti Malaysia Perlis
Azwan Iskandar Azmi
Universiti Malaysia Perlis
Zailani Zainal Abidin
Universiti Malaysia Perlis
Zain M.Z.M.
DOI
10.1063/5.0180574
Abstract
Electrical discharge coating (EDC) is a well-known technique among researchers for modification of metallic surfaces. This process is capable of producing a hard coating layer, biocompatible and high corrosion resistance at low operating cost. Unfortunately, the process develops unfavourable microcracks and porosity on the substrate surface attributed by heat generation. Thus, in this study, the effect of several parameters to the microdefects' formation was investigated through an experimental work based on fractional factorial design. This work was conducted on a nickel-titanium (NiTi) shape memory alloy by varying the EDC parameters, namely; polarity, discharge duration, peak current, pulse interval, gap voltage and additive Ti nano powder concentration in deionized water (DI water). ANOVA results exhibited that the discharge duration has dominated the microcracks and porosity fraction on the substrate surface due to the impact of high intensity of discharge energy. Although, the Ti nano powder mixed in the DI water had capability to reduce the microcracks formation, the porosity fraction during at high gap voltage setting was elevated with the Ti nano powder mixed.
File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies