Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Breast cancer classification using deep learning and FPGA inferencing
 
Options

Breast cancer classification using deep learning and FPGA inferencing

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2023-02-21
Author(s)
Wong E.H.
Fazrul Faiz Zakaria
Universiti Malaysia Perlis
Mustapa M.
Mohd Nazri Mohd Warip
Universiti Malaysia Perlis
Phak Len Al Eh Kan
Universiti Malaysia Perlis
DOI
10.1063/5.0111204
Abstract
Implementing deep learning technology with FPGA as an accelerator has become a popular application due to its efficiency and performance. However, given the tremendous data generated on medical diagnosis, normal inference speed is not sufficient. Hence, the FPGA technology is implemented for fast inference. In this context, the FPGA accelerates the deep learning inference process for fast breast cancer classification with minimal latency on real-time deployment. This paper summarizes the findings of model deployment across various computing devices in deep learning technology with FPGA. The study includes model performance evaluation, throughput, and latency comparison with different batch sizes to the extent of expected delay for real-world deployment. The result concludes that FPGA is the most suitable to act as a deep learning inference accelerator with a high throughput-to-latency ratio and fast parallel inference.
Funding(s)
Ministry of Higher Education, Malaysia
File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies