Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. Journals
  4. International Journal of Nanoelectronics and Materials (IJNeaM)
  5. Characterization of DWT as denoising method for φ-OTDR signal
 
Options

Characterization of DWT as denoising method for φ-OTDR signal

Journal
International Journal of Nanoelectronics and Materials (IJNeaM)
ISSN
1985-5671
Date Issued
2021-12
Author(s)
M S Yusri
Universiti Tenaga Nasional
B Faisal
Universiti Tenaga Nasional
A Ismail
Universiti Tenaga Nasional
N L Saleh
Universiti Putra Malaysia
M F Ismail
Universiti Tenaga Nasional
N D Nordin
Universiti Tenaga Nasional
A H Sulaiman
Universiti Tenaga Nasional
F Abdullah
Universiti Tenaga Nasional
M Z Jamaludin
Universiti Tenaga Nasional
Abstract
DAS system based on φ-OTDR technique suffers from random noises that affect the signalto- noise-ratio of the extracted signals. This results in high false alarm rate, reducing the capabilities of the systems to detect vibration signals. This paper presented a thorough analysis of a denoising method using discrete wavelet function (DWT). We implemented and compared different mother wavelets such as Symlet 4, Haar, Daubechies 4 (Db4), Biorthogonal 4.4 (Bior4.4), Coiflets 3 (Coif3), Discrete approximation of Meyer wavelet (dmey), Fejér-Korovkin filters 8 (fk8) and Reverse Biorthogonal 6.8 (rbio6.8), using multiple levels of decomposition. Four denoising thresholds, Empirical Bayes, Universal Threshold, Stein's Unbiased Risk Estimation (SURE), and Minimax Estimation (Minimax) were characterized using soft threshold rule. From the results obtained, the combination of the Daubechies 4 wavelet function, level 3 decomposition, SURE denoising threshold with soft threshold rule produces the best denoising performance on the φ-OTDR data.
Subjects
  • φ-OTDR

  • Wavelet denoising

  • Signal processing

File(s)
Characterization of DWT as Denoising Method for -OTDR Signal.pdf (2.15 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
Downloads
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
  • About Us
  • Contact Us
  • Policies