Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Investigating the low-velocity impact behaviour of sandwich composite structures with 3D-printed hexagonal honeycomb core—a review
 
Options

Investigating the low-velocity impact behaviour of sandwich composite structures with 3D-printed hexagonal honeycomb core—a review

Journal
Functional Composites and Structures
Date Issued
2023-03-01
Author(s)
Nur Ainin F.
Mohd Azaman Md Deros
Universiti Malaysia Perlis
Mohd Shukry Abdul Majid
Universiti Malaysia Perlis
Mohd Ridzuan Mohd Jamir
Universiti Malaysia Perlis
DOI
10.1088/2631-6331/ac9e89
Abstract
This study aims to comprehensively review previous and present research on the dynamic responses of 3D-printed sandwich composite structures. The low-velocity impact and failure mechanisms caused by the impact load and energy absorption capabilities are discussed. Investigating the processes and mechanics of a material is an essential step in addressing the structural failure problems, which are mostly caused by a fracture. The encouraging impact resistance results have prompted researchers to explore the capabilities of structural integrity to optimize performance, which can be accomplished leveraging the enhanced material and architectural combinations of sandwich composites. The ongoing research into low-velocity behaviour of fabricated sandwich composite structures with 3D-printed hexagonal honeycomb cores and varying core materials is emphasized in this study.
Subjects
  • additive manufacturin...

File(s)
Research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies