Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Data Normalization Methods of Hybridized Multi-Stage Feature Selection Classification for 5G Base Station Antenna Health Effect Detection
 
Options

Data Normalization Methods of Hybridized Multi-Stage Feature Selection Classification for 5G Base Station Antenna Health Effect Detection

Journal
Journal of Advanced Research in Applied Sciences and Engineering Technology
Date Issued
2023-04-01
Author(s)
Sofri T.
Hasliza A Rahim @ Samsuddin
Universiti Malaysia Perlis
Allan Melvin Andrew
Universiti Malaysia Perlis
Soh P.J.
Latifah Munirah Kamarudin
Universiti Malaysia Perlis
Hiromitsu N.
DOI
10.37934/araset.30.2.133140
Handle (URI)
https://hdl.handle.net/20.500.14170/3972
Abstract
It is essential to assess human exposure to Fifth Generation (5G) Radiofrequency Electromagnetic Field (RF-EMF) signal from Base Station (BS) sources operating at Low Band 5G at 700 MHz, Sub-6 Band 5G at 3.5 GHz, and Millimeter Wave (mmWave) 5G at 28 GHz. This assessment will help determine whether 5G technology is safe for people. Inconsistent results were found in previous epidemiological studies on the health effects of radiation exposure from Mobile Phones (MP) and BS when normalization methods were used to prepare the data for Machine Learning (ML), which could lead to misclassification because of the dataset's quality. The effects on adult health are assessed in terms of physiological parameters (body temperature, heart rates, and blood pressure), cognitive performance (brain memory, motor control, and attention), Visual Analogue Scales (VAS) for well-being parameter, and Electromagnetic Field (EMF) perception parameter. The purpose of the research was to identify changes in the physiological parameters of adult individuals before, during, or after exposure to 5G signals, including Sham (No Exposure). 12 normalization methods are selected which are Z-score normalization (z score), Linear scaling (LS), Binary normalization (BNN), Bipolar normalization (BPN), Min-Max scaling (MMS), t-score normalization (t score), Decimal Inverse Logarithmic Scaled Normalization (DILSN), Relative Mean Normalization (RMN), Relative Standard Deviation Normalization (RSDN), Variation Normalization (VN), Robust Normalization (RN) and Relative Interquartile Normalization (RIN) and based on their F-value and p-value analyses, the three best normalization techniques are selected in this research. The original distribution of each parameter data variable is different, these techniques are beneficial for converting data so that it is dimensionless and has equivalent distributions. Based on the selection criteria for the hybridized Multi-Stage Feature Selection (MSFS) classification for 5G base station antenna health effect detection, BNN, MMS, and RSDN were named as the top three normalization techniques.
Funding(s)
Suruhanjaya Komunikasi dan Multimedia Malaysia
Subjects
  • 5G | antenna and prop...

File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Jan 11, 2026
View Details
Downloads
11
Acquisition Date
Jan 11, 2026
View Details
google-scholar
  • About Us
  • Contact Us
  • Policies