Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2024
  5. Influence of multi-walled carbon nanotubes on thermal behaviour and mechanical properties of pineapple leaf fibre-based natural rubber composites
 
Options

Influence of multi-walled carbon nanotubes on thermal behaviour and mechanical properties of pineapple leaf fibre-based natural rubber composites

Journal
Journal of Materials Research and Technology
ISSN
22387854
Date Issued
2024-05-01
Author(s)
Yi Xuan Y.
Mohd Ridzuan Mohd Jamir
Universiti Malaysia Perlis
Mohd Shukry Abdul Majid
Universiti Malaysia Perlis
Rahman M.T.A.
Yudhanto F.
Khasri A.
Ismail M.S.
DOI
10.1016/j.jmrt.2024.05.239
Handle (URI)
https://hdl.handle.net/20.500.14170/9092
Abstract
Replacing synthetic fibres with natural fibres as reinforcement fillers in natural rubber (NR) tends to yield eco-friendly bio-composites. This study investigated the tensile and hardness properties, and the thermal behaviour of pineapple leaf fibre (PALF)-reinforced NR composites with and without the addition of multi-walled carbon nanotubes (MWCNT). The fibre content was varied at 0, 10, 20, and 30 parts per hundred rubber (phr) and the MWCNT content was fixed at 10 phr. The surface morphology of the tensile-fractured specimens was examined using scanning electron microscopy (SEM) to identify the rubber-matrix adhesion and tear mechanisms of the fibres in the NR matrix. The results revealed that including the PALF and MWCNT allowed the NR composites to exhibit excellent stretching stress at low elongations. Additionally, the composites displayed enhanced stiffness, further increasing the hardness of the composite, ranging from 46.8 to 62.8 Shore A. However, PALF reduces the thermal stability of the composite, where the initial degradation temperature increases. From the thermogravimetric analysis, the residues remaining in the NR composites ranged from 6 to 13% at various fibre loadings. Therefore, this study provides valuable insights into the tensile and hardness properties and the thermal behaviour of PALF-reinforced NR composites to improve end-use properties.
Funding(s)
Universiti Malaysia Perlis
Subjects
  • Hardness | Multi-wall...

File(s)
Research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies