Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Research Output and Publications
  3. Institute of Engineering Mathematics (IMK)
  4. Journals Articles
  5. Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model
 
Options

Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model

Journal
PLoS ONE
ISSN
1932-6203
Date Issued
2014-11
Author(s)
Wan Mohd Khairy Adly Wan Zaimi
Universiti Malaysia Perlis
Anuar Ishak
Universiti Kebangsaan Malaysia
Ioan Pop
Babes¸-Bolyai University, Cluj-Napoca, Romania
Editor(s)
James P. Brody
DOI
10.1371/journal.pone.0111743
Abstract
The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno’s nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter.
File(s)
Flow Past a Permeable Stretching_Shrinking Sheet in a Nanofluid Using Two-Phase Model.pdf (442.76 KB)
  • About Us
  • Contact Us
  • Policies

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize