Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2020
  5. Preliminary study of the polymesoda expansa based hydroxyapatite for medical devices coating application
 
Options

Preliminary study of the polymesoda expansa based hydroxyapatite for medical devices coating application

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2020-12-15
Author(s)
Roslan M.R.
Universiti Malaysia Perlis
Nashrul Fazli Mohd Nasir
Universiti Malaysia Perlis
Gilani M.A.
Universiti Malaysia Perlis
Nur Farahiyah Mohammad
Universiti Malaysia Perlis
Cheng Ee Meng
Universiti Malaysia Perlis
Khalid M.F.A.
Zoolfakar A.S.
Nasrul Amri Mohd Amin
Universiti Malaysia Perlis
Shah Fenner Khan Mohamad Khan
Universiti Malaysia Perlis
DOI
10.1063/5.0032391
Abstract
Hydroxyapatite (HA) which is a group of calcium phosphate (CaP) is used as a medical devices coating due to its ability to increase the bioactivity and biocompatibility of the device surface. The attraction of using waste seashells products is interesting due to its sustainability and low cost solution especially in biomedical application. Polymesoda expansa or locally known as Lokan is potentially rich with calcium carbonate (CaCO3). Here, the synthesis of HA was done via precipitation method by utilizing the Polymesoda expansa (Lokan) shells as the resource of calcium precursors. Hydroxyapatite synthesized from Polymesoda expansa was carried out with different pH solution (pH 9 and 13) in alkaline environment. The effects of pH on the morphological and chemical composition properties as well as the Ca/P ratio of HA powders were analyzed through Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Energy Dispersive X-ray Spectrometry (EDS). The finding demonstrates as the pH increases, the calcium apatite reduced and this had increases the Ca/P ratio.
Funding(s)
Universiti Malaysia Perlis
File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies