Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. A quadruplet 3-D laser scribed graphene/MoS2 functionalised N2-doped graphene quantum dots and lignin-based Ag-nanoparticles for biosensing
 
Options

A quadruplet 3-D laser scribed graphene/MoS2 functionalised N2-doped graphene quantum dots and lignin-based Ag-nanoparticles for biosensing

Journal
International Journal of Biological Macromolecules
ISSN
01418130
Date Issued
2023-12-31
Author(s)
Vasudevan M.
Perumal V.
Raja P.B.
Ibrahim M.N.M.
Lee H.L.
Subash Chandra Bose Gopinath
Universiti Malaysia Perlis
Ovinis M.
Karuppanan S.
Ang P.C.
Arumugam N.
Kumar R.S.
DOI
10.1016/j.ijbiomac.2023.126620
Abstract
Troponin I is a protein released into the human blood circulation and a commonly used biomarker due to its sensitivity and specificity in diagnosing myocardial injury. When heart injury occurs, elevated troponin Troponin I levels are released into the bloodstream. The biomarker is a strong and reliable indicator of myocardial injury in a person, with immediate treatment required. For electrochemical sensing of Troponin I, a quadruplet 3D laser-scribed graphene/molybdenum disulphide functionalised N2-doped graphene quantum dots hybrid with lignin-based Ag-nanoparticles (3D LSG/MoS2/N-GQDs/L-Ag NPs) was fabricated using a hydrothermal process as an enhanced quadruplet substrate. Hybrid MoS2 nanoflower (H3 NF) and nanosphere (H3 NS) were formed independently by varying MoS2 precursors and were grown on 3D LSG uniformly without severe stacking and restacking issues, and characterized by morphological, physical, and structural analyses with the N-GQDs and Ag NPs evenly distributed on 3D LSG/MoS2 surface by covalent bonding. The selective capture of and specific interaction with Troponin I by the biotinylated aptamer probe on the bio-electrode, resulted in an increment in the charge transfer resistance. The limit of detection, based on impedance spectroscopy, is 100 aM for both H3 NF and H3 NS hybrids, with the H3 NF hybrid biosensor having better analytical performance in terms of linearity, selectivity, repeatability, and stability.
Funding(s)
King Saud University
Subjects
  • Biopolymer | Molybden...

File(s)
research repository notification.pdf (4.4 MB)
altmetric
dimensions
Views
1
Acquisition Date
Nov 18, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize