Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. Microcontroller based MPPT solar charge controller
 
Options

Microcontroller based MPPT solar charge controller

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2021-07-21
Author(s)
Nor Hanisah Baharudin
Universiti Malaysia Perlis
Tunku Muhammad Nizar Tunku Mansur
Universiti Malaysia Perlis
Cong T.L.
Sobri N.F.A.
Rosnazri Ali
Universiti Malaysia Perlis
DOI
10.1063/5.0054253
Abstract
This paper presents the Arduino Nano microcontroller based maximum power point tracking (MPPT) solar charge controller. The optimum solar photovoltaic power is extracted using the Perturb and Observe (P&O) MPPT algorithm. Whilst there are many MPPT solar charge controllers available in the market, the Arduino Nano based MPPT solar charge controller is an attractive method for MPPT controller due to its adaptability, simple, cheap, and durable with good performance for remote areas application with cheaper cost than conventional MPPT charge controllers. This system ensures maximum power is harvested from the photovoltaic panel and capable to charge the battery as well as maintain the battery health condition. This will increase the battery lifespan and increases the efficiency of the photovoltaic panel under varying solar insolations. In this paper, the Perturb and Observe (P&O) algorithm method is developed by using an Arduino Nano based MPPT controller for the photovoltaic generation system. The test result has shown the performance of the proposed controller is capable of tracking the photovoltaic maximum power point and extracting the optimum available power whilst charging the battery in the healthy mode.
Funding(s)
Ministry of Higher Education, Malaysia
File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies