Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Modeling coupled electric drives systems using a modified narmax model
 
Options

Modeling coupled electric drives systems using a modified narmax model

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2021-05-03
Author(s)
Mohd Zakimi Zakaria
Universiti Malaysia Perlis
Mansor Z.
Azuwir Mohd Nor
Universiti Malaysia Perlis
Mohamad Ezral Baharudin
Universiti Malaysia Perlis
Mohd Sazli Saad
Universiti Malaysia Perlis
DOI
10.1063/5.0044585
Abstract
The nonlinear auto-regressive moving average with exogeneous input (NARMAX) model known as one of superior type of models to represent a wide class of dynamic systems. In this paper, a modified NARMAX is proposed in modeling dynamic system. The aim is to investigate the performance of the modified NARMAX model and compared to the conventional NARMAX model for modeling CE8 coupled electric drives system. Multi-objective optimization differential evolution (MOODE) algorithm is used as a model structure selection algorithm to obtain the final model from both approached models. Model predicted output (MPO) test is applied in order to reveal the performance of each model. Through the MPO test, it is concluded that the modified NARMAX model offers a better predicted output than conventional NARMAX model.
File(s)
Research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies