Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Numerical Simulation on the Impact of Back Gate Voltage in Thin Body and Thin Buried Oxide of Silicon on Insulator (SOI) MOSFETs
 
Options

Numerical Simulation on the Impact of Back Gate Voltage in Thin Body and Thin Buried Oxide of Silicon on Insulator (SOI) MOSFETs

Journal
International Journal of Nanoelectronics and Materials
ISSN
19855761
Date Issued
2023-10-01
Author(s)
Koay K.Y.
Mohamad Faris Mohamad Fathil
Universiti Malaysia Perlis
Mohammad Nuzaihan Md Nor
Universiti Malaysia Perlis
Ramzan Mat Ayub
Universiti Malaysia Perlis
Mohd Khairuddin Md Arshad
Universiti Malaysia Perlis
Abstract
Silicon-on-Insulator (SOI) technology provides a solution for controlling Short-Channel Effects (SCEs) and enhancing the performance of Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs). However, scaling down SOI MOSFETs to a nanometer scale does not necessarily yield further scaling benefits. Introducing multiple gates, such as a double gate configuration, can effectively mitigate SCEs. Nonetheless, fabricating a flawless double gate structure is an exceedingly challenging endeavor that remains unrealized. The adoption of a back gate bias, with an asymmetrical thickness arrangement between the front and back gates, mimicking the behavior of a double gate, offers an alternative approach. This approach has the potential to modify the electrical characteristics of the device, thus potentially leading to improved control over SCEs. In this study, we employed 2D simulations using Atlas to investigate the influence of back gate biases, namely,-2.0 V, 0 V, and 2.0 V on a 10 nm silicon thickness at the top and a 20 nm buried oxide thickness for n-channel MOSFETs. We focused on key parameters, including threshold voltage (VTh), Drain Induced Barrier Lowering (DIBL), and Subthreshold Swing (SS). The results demonstrate that a negative back gate bias is the most favorable configuration, as it yields superior performance. This translates into more effectively controlled SCEs across all the parameters of interest.
Subjects
  • Multiple gates MOSFET...

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize