This paper presents the influence of electrical discharge coatings parameters on the material loss due to the tool electrode erosion (MLTE) and the maximum height roughness, Rz on the NiTi alloy substrate. Five parameters were investigated; namely polarity, discharge duration, peak current, pulse interval and gap voltage. The experimental study was carried out using 2-level factorial design and analyzed using analysis of variance (ANOVA). The analysis results showed that the discharge duration dominates the effect on MLTE and Rz up to 39.39 and 72.41%, respectively. Then, this followed by the peak current at 15.52 and 4.63%, respectively. Furthermore, several interactions between discharge duration with other parameters were also significant on the model for both responses. Higher MLTE and Rz were recorded during high discharge duration and peak current due to the impact of increasing the discharge energy.