Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Time Domain Analysis for Emotional EEG Signals of Stroke Patient and Normal Subject
 
Options

Time Domain Analysis for Emotional EEG Signals of Stroke Patient and Normal Subject

Journal
2023 15th International Conference on Computer and Automation Engineering, ICCAE 2023
Date Issued
2023-01-01
Author(s)
Vincen E.
Wan Khairunizam Wan Ahmad
Universiti Malaysia Perlis
Yean C.W.
Wan Azani Wan Mustafa
Universiti Malaysia Perlis
DOI
10.1109/ICCAE56788.2023.10111252
Handle (URI)
https://hdl.handle.net/20.500.14170/5649
Abstract
This paper aims to analyze the emotional Electroencephalogram (EEG) signals of different time windows. The time window of the signals is one of the variables that affect the efficiency of the EEG signal analysis. In this research, a total of 30 subjects are analyzed from three different groups namely 10 left brain damage (LBD), 10 right brain damage (RBD), and 10 normal control (NC) for six different emotional states. The 14-Channel Wireless Emotiv EPOC device with a sampling frequency of 128 Hz is used to extract EEG signal from the subjects. The 6th Order Butterworth Bandpass filter is used to extract the EEG signals with the frequency band of 8-49 Hz, which are alpha to gamma waves. The EEG signals are segmented in 2s, 4s, 6s, and 8s time windows for all frequency bands. In addition, the K-Nearest Neighbor (KNN) and Probabilistic Neural Network (PNN) classifiers are used to classify the six emotions in LBD, RBD and NC. The beta and gamma bands are the best performing EEG frequency band for emotion classification. In the investigation, 6s time windows have the highest classification accuracy for KNN with 81.90% and 8s time window for PNN classifier with 82.15%.
Funding(s)
Ministry of Higher Education, Malaysia
Subjects
  • electroencephalogram ...

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies