Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2019
  5. Removal of As(iii) and As(v) from water using green, silica-based ceramic hollow fibre membranes: Via direct contact membrane distillation
 
Options

Removal of As(iii) and As(v) from water using green, silica-based ceramic hollow fibre membranes: Via direct contact membrane distillation

Journal
RSC Advances
Date Issued
2019-01-01
Author(s)
Hubadillah S.K.
Dzarfan Othman M.H.
Sheikh Abdul Kadir S.H.
Jamalludin M.R.
Harun Z.
Abd Aziz M.H.
Rahman M.A.
Jaafar J.
Nomura M.
Honda S.
Iwamoto Y.
Fansuri H.
DOI
10.1039/c8ra08143c
Abstract
Arsenite [As(iii)] and arsenate [As(v)] removal by direct contact membrane distillation (DCMD) using novel hydrophobic green, silica-based ceramic hollow fibre membranes derived from agricultural rice husk was investigated in this work. The green ceramic hollow fibre membranes were prepared from amorphous (ASHFM) and crystalline (CSHFM) silica-based rice husk ash and modified to be hydrophobic via immersion fluoroalkylsilane (FAS) grafting of 1H,1H,2H,2H-perfluorodecyltriethoxysilane. Superhydrophobic contact angle values up to 157° and 161° were obtained for ASHFM and CSHFM, respectively. Remarkably, the membrane surface morphology mimicked a look-alike lotus-leaf structure with decrement in pore size after grafting via the silane agent for both membranes. The effect of arsenic pH (3-11), arsenic concentration (1-1000 ppm) and feed temperature (50-80 °C) were studied and it was found that feed temperature had a significant effect on the permeate flux. The hydrophobic CSHFM, with a flux of 50.4 kg m -2 h -1 for As(iii) and 51.3 kg m -2 h -1 for As(v), was found to be the best of the tested membranes. In fact, this membrane can reject arsenic to the maximum contaminant level (MCL) limit of 10 ppb under any conditions, and no swelling mechanism of the membranes was observed after testing for 4 hours.
Funding(s)
Japan Society for the Promotion of Science
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies